• Title/Summary/Keyword: particle resampling

Search Result 14, Processing Time 0.039 seconds

An Improved Resampling Technique using Particle Density Information in FastSLAM (FastSLAM 에서 파티클의 밀도 정보를 사용하는 향상된 Resampling 기법)

  • Woo, Jong-Suk;Choi, Myoung-Hwan;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.619-625
    • /
    • 2009
  • FastSLAM which uses the Rao-Blackwellized particle filter is one of the famous solutions to SLAM (Simultaneous Localization and Mapping) problem that estimates concurrently a robot's pose and surrounding environment. However, the particle depletion problem arises from the loss of the particle diversity in the resampling process of FastSLAM. Then, the performance of FastSLAM degenerates over the time. In this work, DIR (Density Information-based Resampling) technique is proposed to solve the particle depletion problem. First, the cluster is constructed based on the density of each particle, and the density of each cluster is computed. After that, the number of particles to be reserved in each cluster is determined using a linear method based on the distance between the highest density cluster and each cluster. Finally, the resampling process is performed by rejecting the particles which are not selected to be reserved in each cluster. The performance of the DIR proposed to solve the particle depletion problem in FastSLAM was verified in computer simulations, which significantly reduced both the RMS position error and the feature error.

Neural source localization using particle filter with optimal proportional set resampling

  • Veeramalla, Santhosh Kumar;Talari, V.K. Hanumantha Rao
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.932-942
    • /
    • 2020
  • To recover the neural activity from Magnetoencephalography (MEG) and Electroencephalography (EEG) measurements, we need to solve the inverse problem by utilizing the relation between dipole sources and the data generated by dipolar sources. In this study, we propose a new approach based on the implementation of a particle filter (PF) that uses minimum sampling variance resampling methodology to track the neural dipole sources of cerebral activity. We use this approach for the EEG data and demonstrate that it can naturally estimate the sources more precisely than the traditional systematic resampling scheme in PFs.

Geographical Group-based FastSLAM Algorithm for Maintenance of the Diversity of Particles (파티클 다양성 유지를 위한 지역적 그룹 기반 FastSLAM 알고리즘)

  • Jang, June-Young;Ji, Sang-Hoon;Park, Hong Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.907-914
    • /
    • 2013
  • A FastSLAM is an algorithm for SLAM (Simultaneous Localization and Mapping) using a Rao-Blackwellized particle filter and its performance is known to degenerate over time due to the loss of particle diversity, mainly caused by the particle depletion problem in the resampling phase. In this paper, the GeSPIR (Geographically Stratified Particle Information-based Resampling) technique is proposed to solve the particle depletion problem. The proposed algorithm consists of the following four steps : the first step involves the grouping of particles divided into K regions, the second obtaining the normal weight of each region, the third specifying the protected areas, and the fourth resampling using regional equalization weight. Simulations show that the proposed algorithm obtains lower RMS errors in both robot and feature positions than the conventional FastSLAM algorithm.

A Study on Particle Filter based on KLD-Resampling for Wireless Patient Tracking

  • Ly-Tu, Nga;Le-Tien, Thuong;Mai, Linh
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • In this paper, we consider a typical health care system via the help of Wireless Sensor Network (WSN) for wireless patient tracking. The wireless patient tracking module of this system performs localization out of samples of Received Signal Strength (RSS) variations and tracking through a Particle Filter (PF) for WSN assisted by multiple transmit-power information. We propose a modified PF, Kullback-Leibler Distance (KLD)-resampling PF, to ameliorate the effect of RSS variations by generating a sample set near the high-likelihood region for improving the wireless patient tracking. The key idea of this method is to approximate a discrete distribution with an upper bound error on the KLD for reducing both location error and the number of particles used. To determine this bound error, an optimal algorithm is proposed based on the maximum gap error between the proposal and Sampling Important Resampling (SIR) algorithms. By setting up these values, a number of simulations using the health care system's data sets which contains the real RSSI measurements to evaluate the location error in term of various power levels and density nodes for all methods. Finally, we point out the effect of different power levels vs. different density nodes for the wireless patient tracking.

Design of the Target Estimation Filter based on Particle Filter Algorithm for the Multi-Function Radar (파티클 필터 알고리즘을 이용한 다기능레이더 표적 추적 필터 설계)

  • Moon, Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.517-523
    • /
    • 2011
  • The estimation filter in radar systems must track targets' position within low tracking error. In the Multi-Function Radar(MFR), ${\alpha}-{\beta}$ filter and Kalman filter are widely used to track single or multiple targets. However, due to target maneuvering, these filters may not reduce tracking error, therefore, may lost target tracks. In this paper, a target tracking filter based on particle filtering algorithm is proposed for the MFR. The advantage of this method is that it can track targets within low tracking error while targets maneuver and reduce impoverishment of particles by the proposed resampling method. From the simulation results, the improved tracking performance is obtained by the proposed filtering algorithm.

Visual Attention Model Based on Particle Filter

  • Liu, Long;Wei, Wei;Li, Xianli;Pan, Yafeng;Song, Houbing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3791-3805
    • /
    • 2016
  • The visual attention mechanism includes 2 attention models, the bottom-up (B-U) and the top-down (T-D), the physiology of which have not yet been accurately described. In this paper, the visual attention mechanism is regarded as a Bayesian fusion process, and a visual attention model based on particle filter is proposed. Under certain particular assumed conditions, a calculation formula of Bayesian posterior probability is deduced. The visual attention fusion process based on the particle filter is realized through importance sampling, particle weight updating, and resampling, and visual attention is finally determined by the particle distribution state. The test results of multigroup images show that the calculation result of this model has better subjective and objective effects than that of other models.

Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment (노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용)

  • Choi, Seon Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.21-32
    • /
    • 2019
  • Inspired by the social behavior models of a bird flock or fish school, particle swarm optimization (PSO) is a popular metaheuristic optimization algorithm and has been widely used from solving a complex optimization problem to learning a artificial neural network. However, PSO is difficult to apply to many real-life optimization problems involving stochastic noise, since it is originated in a deterministic environment. To resolve this problem, this paper incorporates a resampling method called the uncertainty evaluation (UE) method into PSO. The UE method allows the particles to converge on the accurate optimal solution quickly in a noisy environment by selecting the particles' global best position correctly, one of the significant factors in the performance of PSO. The results of comparative experiments on several benchmark problems demonstrated the improved performance of the propose algorithm compared to the existing studies. In addition, the results of the case study emphasize the necessity of this work. The proposed algorithm is expected to be effectively applied to optimize complex systems through digital twins in the fourth industrial revolution.

Fault Diagnosis Method Based on High Precision CRPF under Complex Noise Environment

  • Wang, Jinhua;Cao, Jie
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.530-540
    • /
    • 2020
  • In order to solve the problem of low tracking accuracy caused by complex noise in the fault diagnosis of complex nonlinear system, a fault diagnosis method of high precision cost reference particle filter (CRPF) is proposed. By optimizing the low confidence particles to replace the resampling process, this paper improved the problem of sample impoverishment caused by the sample updating based on risk and cost of CRPF algorithm. This paper attempts to improve the accuracy of state estimation from the essential level of obtaining samples. Then, we study the correlation between the current observation value and the prior state. By adjusting the density variance of state transitions adaptively, the adaptive ability of the algorithm to the complex noises can be enhanced, which is expected to improve the accuracy of fault state tracking. Through the simulation analysis of a fuel unit fault diagnosis, the results show that the accuracy of the algorithm has been improved obviously under the background of complex noise.

Evolution Strategies Based Particle Filters for Nonlinear State Estimation

  • Uosaki, Katsuji;Kimura, Yuuya;Hatanaka, Toshiharu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.559-564
    • /
    • 2003
  • Recently, particle filters have attracted attentions for nonlinear state estimation. They evaluate a posterior probability distribution of the state variable based on observations in simulation using so-called importance sampling. However, degeneracy phenomena in the importance weights deteriorate the filter performance. A new filter, Evolution Strategies Based Particle Filter, is proposed to circumvent this difficulty and to improve the performance. Numerical simulation results illustrate the applicability of the proposed idea.

  • PDF

Particle Filter Performance for Ultra-tightly GPS/INS integration (파티클 필터의 GPS/INS 초강결합 성능분석)

  • Park, Jin-Woo;Yang, Cheol-Kwan;Shim, Duk-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.785-791
    • /
    • 2008
  • Ultra-tightly coupled GPS/INS integration has been reported to show better navigation performance than that of other integration methods such as loosely coupled and tightly coupled integration. This paper uses the particle filter for ultra-tightly coupled GPS/INS integration and analyzes the navigation performance according to vehicle trajectory and the number of particles. The navigation performance of particle filter is compared with those of EKF and UKF.