• Title/Summary/Keyword: particle reduction

Search Result 968, Processing Time 0.027 seconds

Distributional Characteristics and Factors Related to the Population Persistence, an Endangered Plant Glaux maritima var. obtusifolia Fernald (멸종위기야생식물인 갯봄맞이꽃(Glaux maritima var. obtusifolia Fernald)의 분포특성과 개체군의 지속에 관여하는 요인)

  • Kim, Young-Chul;Chae, Hyun-Hee;Oh, Hyun-Kyung;Lee, Kyu-Song
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.6
    • /
    • pp.939-961
    • /
    • 2016
  • For effective conservation of endangered wild plants, it is necessary to understand their interactions with environmental factors in each habitat together with life traits of target species. First, the characteristics of their distribution were investigated followed by their monitoring for 4 years focusing on the habitats in the lagoon. Also, their life traits were compared including production of hibernacles, fruits, and seeds by the soil fertilization and light intensities. Next, the information on the species was secured by germination experiment using the generated seeds from the cultivation experiment. The habitat of Glaux maritima var. obtusifolia Fernald in Korea was located in the rear edge of the worldwide distribution and its four habitats were isolated and distributed far away each other. Two of them were located in small salt-marsh and fine sand estuaries formed in the rocky area of the seashore, and the other two were inhabited with the sandy soil in the lagoon which was connected by river-mouth to the sea. Glaux maritima var. obtusifolia Fernald tends to be distributed in the sites where the establishment and growth of the competitor were inhibited by salinity, periodic flooding, and lower layer of the soil to extend a roots. It maintained its population by recruitments of hibernacles and seedling. The production of hibernacle was assumed to be affected by the particle consist of the sand together with organic matters in the soil. Seedling recruitment was observed only in the salt-marsh area located in the rear sites of sand ridge where was the shore of the lagoon. Glaux maritima var. obtusifolia Fernald was observed to have different threatening factors by each population. Its population in Pohang seemed the sedimentation of fine sand which affected the recruitment of hibernacles had been eroded due to the construction of the coastal road. The population in Ulsan appeared rapid expansion of competitor and reduction of its distribution area due to the interruption of eluted water supplied to the habitat. On the other hand, the habitat in the lagoon maintained the population relatively stable. Especially, the population in Songji-ho was determined to be the most stable one. To sustain the population of Glaux maritima var. obtusifolia Fernald distributed in the lagoon, it is suggested that the wide ranged scale of conservational activities is necessary to maintain the mechanisms including the entrance of seawater which belongs to the lagoon, and periodic flooding.

Effects of anatase-rutile phase transition and grain growth with WO3 on thermal stability for TiO2 SCR catalyst (WO3 첨가에 의한 TiO2계 SCR 촉매의 상전이 및 입자성장이 고온안정성에 미치는 영향)

  • Yoon, Sang-Hyeon;Kim, Jang-Hoon;Shin, Byeong-Kil;Park, Sam-Sik;Shin, Dong-Woo;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.181-186
    • /
    • 2011
  • Thermal stability of the $TiO_2$ SCR catalyst with W03 loading was investigated in terms of structural and morphological analyses. The $TiO_2$ catalysts with 10 w% $WO_3$ content and without $WO_3$ were prepared. which were heat-treated at $800^{\circ}C$ for 5 h. It was found that the catalytic acidity was decreased by thermal degradation in the $WO_3-TiO_2$ specimen that relatively less than the $TiO_2$ specimen from FT-IR analysis. The phase transition of the $TiO_2$ catalyst from anatase to rutile was increased by heal-treatment, and the percentage of the rutile phase was 28.4 % in the $WO_3-TiO_2$ and 22.9 % in the $TiO_2$. A shell region of $WO_3$ distinguished from a $TiO_2$ particle was also observed in the grain boundary region, and the $WO_3$ led to the suppression of grain growth. It could be confirmed that the suppression of grain growth can contribute to the improvement of catalytic properties for thermal stability more than the increase of anatase-rutile phase transformation which cause the reduction of the catalytic activity in the $TiO_2$ SCR catalyst by the presence of $WO_3$.

Preparation of (n-BuCp)2ZrCl2 Catalyst Supported on SiO2/MgCl2 Binary Support and its Ethylene-1-hexene Copolymerization (SiO2/MgCl2 이원 담체에 담지된 (n-BuCp)2ZrCl2 합성과 에틸렌-1-헥센 공중합)

  • Carino, Ann Charise;Park, Sang Jun;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.461-467
    • /
    • 2018
  • In this study, $(n-BuCp)_2ZrCl_2$, was supported on $SiO_2/MgCl_2$ binary support. Before supporting the catalyst, the $SiO_2/MgCl_2$ binary support was surface treated with three different alkyl aluminum compound, namely trimethylaluminum, triethylaluminum, and ethylaluminum sesquichloride. The synthesized surface-treated $SiO_2/MgCl_2$ supported metallocene catalysts were used for the copolymerization of ethylene and 1-hexene. Their catalytic properties and performances were analyzed through BET, XPS analysis, ICP-AES analysis, and FE-SEM. While the resulting copolymers were analyzed through DSC analysis, GPC analysis, 13C-NMR analysis, and FE-SEM. The analysis of synthesized surface-treated $SiO_2/MgCl_2$ supported metallocene catalysts showed that the Zr content of these catalysts is relatively lower compared to that of the catalyst supported on $SiO_2$. This could be attributed to the reduction in the surface area of $SiO_2$ due to the presence of recrystallized $MgCl_2$ and alkyl aluminum. Furthermore, they exhibited a better copolymerization activity compared to that of $SiO_2$ supported catalyst, particularly the EASC-surface treated binary support, which has the highest activity of 1.9 kg PE/($mmol-Zr^*hr$) because EASC acts as a strong Lewis acid. It could also be observed that the larger the ligand of alkyl aluminum used, the rougher the particle surface of the resulting polymer.

Mineralogical Studies of the Tourmaline for Medicinal Applications by Production Localities (본초 광물로서의 활용을 위한 산지별 전기석의 광물학적 연구)

  • Jie, Yan;Kim, Seon-ok;Park, Hee Yul;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.345-358
    • /
    • 2018
  • In this study, we have performed electron probe micro analyzer (EPMA), X-ray differaction (XRD), inductively coupled plasma spectroscopy (ICP), Fourier transform Raman spectroscopy (FT-Raman), far-infrared (FIR), nuclear magnetic resonance (NMR), and pH-DO Analyses for characterizing medicinal mineralogy aspect of the black tourmaline (Shantung, china), black and pink tourmaline (Minas Geraris, Brazil), black touemaline (Daeyu mine, Korea). In addition, heating effects of the tourmaline sauna as well as the effects of tourmaline powder-added soap on skin troubles have been investigated. It has been revealed that chemical composition of the tourmaline is either high in Fe-, Al-, B-rich types. Ratio of the K-Ca, Na-K, and Fe-B reflects the component change property of solid solution. $CaO/CaO+Na_2O$ and MgO/FeO+MgO ratio show high positive correlation. When tourmaline reacts with distilled water, extended reaction time DO values approximately decrease and it stabilizes at DO = 10. Otherwise, pH values increase until 6 hours and it stabilizes at pH = 8 after 24 hours. Distilled water changes to alkaline when it reacts with tourmaline powder and particles. Tourmaline showed lower absorption spectrum strength and transmittance at short wave, where absorption spectrum wavelength and strength were determined by the content of the composition elements and characteristics of crystallography. Increase of the Fe content has been confirmed to be the cause for the reduction of irradiation. For the chemical composition and spectral property of the tourmaline particle samples, it has been found that Si and Fe contents show positive correlation with Far-Infrared irradiation, while Al and Mg contents show negative correlation. For tourmaline powder, it has been confirmed that $^{17}O-NMR$ FWHM (full width at half maximum) decreases when reacts with distilled water. Tourmaline sauna (approximately $100^{\circ}C$) was found to increase $0.5-1.5^{\circ}C$ of body temperature, average of 12 heartbeat, and 10mg Hg of blood pressure. Tourmaline soap had very good aesthetic effect to skin and was confirmed to have above the average improvements to skin troubles (e.g., allergy or atopy).

Optimization Test of Plant-Mineral Composites to Control Nuisance Phytoplankton Aggregates in Eutrophic Reservoir (부영양 저수지의 조류제거를 위한 기능성 천연물질혼합제의 최적화 연구)

  • Lee, Ju-Hwan;Kim, Baik-Ho;Moon, Byeong-Cheon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.31-41
    • /
    • 2011
  • To optimize the natural chemical agents against nuisance phytoplankton, we examined algal removal activity (ABA) of Plant-Mineral Composite (PMC), which already developed by our teams (Kim et al., 2010), on various conditions. The PMC are consisted of extracted-mixtures with indigenous plants (Camellia sinensis, Quercusacutissima and Castanea crenata) and minerals (Loess, Quartz porphyry, and natural zeolite), and characterized by coagulation and floating of low-density suspended solids. A simple extraction process was adopted, such as drying and grinding of raw material, water-extraction by high temperature-sonication and filtering. All tests were performed in 3 L plastic chambers varying conditions; six different concentrations ($0{\sim}1.0\;mL\;L^{-1}$), six light intensities ($8{\sim}1,400\;{\mu}mol\;m^{-2}s^{-1}$), three temperatures ($10{\sim}30^{\circ}C$), four pHs (7~10), five water depths (10~50 cm), and three different waters dominated by cyanobacteria, diatom, and green algae, respectively. Results indicate that the highest ABA of PMC was seen at $0.05\;mL\;L^{-1}$ in treatment concentrations, where showed a reduction of more than 80% of control phytoplankton biomass, while $1,400\;{\mu}mol\;m^{-2}s^{-1}$ in light intensity (>90%), $20{\sim}30^{\circ}C$ temperature (>60%), 7~9 in pH (>90%), below 50 cm in water depth (>90%), and cyanobacterial dominating waters (>80%), respectively. Over the test, ABA of PMC were more obvious on the algal biomass (chlorophyll-${\alpha}$) than suspended solids, suggesting a selectivity of PMC to particle size or natures. These results suggest that PMC agents can play an important role as natural agents to remove the nuisant algal aggregates or seston of eutrophic lake, where occur cyanobacterial bloom in a shallow shore of lake during warm season.

Effect of the Preparation Method on the Activity of CeO2-promoted Co3O4 Catalysts for N2O Decomposition (촉매 제조방법에 따른 Co-CeO2 촉매의 N2O 분해 특성 연구)

  • Kim, Hye Jeong;Kim, Min-Jae;Lee, Seung-Jae;Ryu, In-Soo;Yi, Kwang Bok;Jeon, Sang Goo
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.198-205
    • /
    • 2018
  • This study investigated the influence of catalyst preparation on the activity of $Co-CeO_2$ catalyst for $N_2O$ decomposition. $Co-CeO_2$ catalysts were synthesized by co-precipitation and incipient wetness impregnation. In order to estimate the performance of the as prepared catalysts, direct catalytic $N_2O$ decomposition test was carried out under $250{\sim}375^{\circ}C$. As a result, the catalyst prepared by co-precipitation (CoCe-CP) showed an enhanced performance on $N_2O$ decomposition reaction even in the presence of $O_2$ and/or $H_2O$, whereas the impregnation catalyst (CoCe-IM) did not. In order to investigate the difference in catalytic activity, characterization such as XRD, BET, TEM, $H_2-TPR$, $O_2-TPD$, and XPS was conducted. It is confirmed that the particle size and specific surface area were changed depending on the catalyst preparation method and the synthesis process influenced the physical properties of the catalysts. In addition, the improvement in the activity of the catalyst prepared by co-precipitation is due to the enhanced reduction from $Co^{3+}$ to $Co^{2+}$ and the improved oxygen desorption rate. However, it has been confirmed that the surface electron state and binding energy, which are related to $N_2O$ decomposition, do not change depending on the preparation method.

Dose Alterations at the Distal Surface by Tissue Inhomogeneity in High Energy Photon Beam (조직 불균질성에 의한 고에너지 광자선의 선량변화)

  • Kim, Young-Ai;Choi, Tae-Jin;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.13 no.3
    • /
    • pp.277-283
    • /
    • 1995
  • Purpose : This study was performed to measure dose alteration at the air-tissue interface resulting from rebuild-up to the loss of charged particle equilibrium in the tissues around the air-tissue interfaces. Materials and Methods : The 6 and 10-MV photon beam in dual energy linear accelerator were used to measure the surface dose at the air-tissue interface The polystyrene phantom sized $25{\times}25{\times}5\;cm^3$ and a water phantom sized $29{\times}29{\times}48\;cm^3$ which incorporates a parallel-plate ionization chamber in the distal side of air gap were used in this study. The treatment field sizes were $5{\times}5\;cm^2,\;10{\times}10\;cm^2\;and\;20{\times}20\;cm^2$. Air cavity thickness was variable from 10 mm to 50 mm. The observed-expected ratio (OER) was defined as the ratio of dose measured at the distal junction that is air-tissue interface to the dose measured at the same point in a homogeneous phantom. Results : In this experiment, the result of OER was close or slightly over than 1.0 for the large field size but much less (about 0.565) than 1.0 for the small field size in both photon energy. The factors to affect the dose distribution at the air-tissue interface were the field size, the thickness of air cavity. and the photon energy. Conclusion : Thus, the radiation oncologist should take into account dose reduction at the air-tissue interface when planning the head and neck cancer especially pharynx and laryngeal lesions, because the dose can be less nearly $29{\%}$ than predicted value.

  • PDF

A study on the change effect of emission regulation mode on vehicle emission gas (배기가스 규제 모드 변화가 차량 배기가스에 미치는 영향 연구)

  • Lee, Min-Ho;Kim, Ki-Ho;Lee, Joung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1108-1119
    • /
    • 2018
  • As the interest on the air pollution is gradually rising at home and abroad, automotive and fuel researchers have been studied on the exhaust and greenhouse gas emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emissions (regulated and non-regulated emissions, PM particle matter) and greenhouse gases of vehicle. Exhaust emissions and greenhouse gases of automotive had many problem such as the cause of ambient pollution, health effects. In order to reduce these emissions, many countries are regulating new exhaust gas test modes. Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UNECE since 2007. This test procedure was applied to domestic light duty diesel vehicles at the same time as Europe. The air pollutant emissions from light-duty vehicles are regulated by the weight per distance, which the driving cycles can affect the results. Exhaust emissions of vehicle varies substantially based on climate conditions, and driving habits. Extreme outside temperatures tend to increasing the emissions, because more fuel must be used to heat or cool the cabin. Also, high driving speeds increases the emissions because of the energy required to overcome increased drag. Compared with gradual vehicle acceleration, rapid vehicle acceleration increases the emissions. Additional devices (air-conditioner and heater) and road inclines also increases the emissions. In this study, three light-duty vehicles were tested with WLTP, NEDC, and FTP-75, which are used to regulate the emissions of light-duty vehicles, and how much emissions can be affected by different driving cycles. The emissions gas have not shown statistically meaningful difference. The maximum emission gas have been found in low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of emission gas in cooled engine condition is much different as test vehicles. It means different technical solution requires in this aspect to cope with WLTP driving cycle.