DOI QR코드

DOI QR Code

Effect of the Preparation Method on the Activity of CeO2-promoted Co3O4 Catalysts for N2O Decomposition

촉매 제조방법에 따른 Co-CeO2 촉매의 N2O 분해 특성 연구

  • Kim, Hye Jeong (Graduate School of Energy Science and Technology Chungnam National University) ;
  • Kim, Min-Jae (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Seung-Jae (Korea Institute of Energy Research) ;
  • Ryu, In-Soo (Korea Institute of Energy Research) ;
  • Yi, Kwang Bok (Graduate School of Energy Science and Technology Chungnam National University) ;
  • Jeon, Sang Goo (Korea Institute of Energy Research)
  • 김혜정 (충남대학교 에너지과학기술대학원) ;
  • 김민재 (고려대학교 화공생명공학과) ;
  • 이승재 (한국에너지기술연구원) ;
  • 유인수 (한국에너지기술연구원) ;
  • 이광복 (충남대학교 에너지과학기술대학원) ;
  • 전상구 (한국에너지기술연구원)
  • Received : 2018.03.02
  • Accepted : 2018.03.23
  • Published : 2018.09.28

Abstract

This study investigated the influence of catalyst preparation on the activity of $Co-CeO_2$ catalyst for $N_2O$ decomposition. $Co-CeO_2$ catalysts were synthesized by co-precipitation and incipient wetness impregnation. In order to estimate the performance of the as prepared catalysts, direct catalytic $N_2O$ decomposition test was carried out under $250{\sim}375^{\circ}C$. As a result, the catalyst prepared by co-precipitation (CoCe-CP) showed an enhanced performance on $N_2O$ decomposition reaction even in the presence of $O_2$ and/or $H_2O$, whereas the impregnation catalyst (CoCe-IM) did not. In order to investigate the difference in catalytic activity, characterization such as XRD, BET, TEM, $H_2-TPR$, $O_2-TPD$, and XPS was conducted. It is confirmed that the particle size and specific surface area were changed depending on the catalyst preparation method and the synthesis process influenced the physical properties of the catalysts. In addition, the improvement in the activity of the catalyst prepared by co-precipitation is due to the enhanced reduction from $Co^{3+}$ to $Co^{2+}$ and the improved oxygen desorption rate. However, it has been confirmed that the surface electron state and binding energy, which are related to $N_2O$ decomposition, do not change depending on the preparation method.

본 연구는 $Co-CeO_2$ 촉매의 $N_2O$ 분해 반응에서 촉매의 제조 방법이 활성에 미치는 영향을 고찰하였다. $Co-CeO_2$ 촉매는 공침법(Co-precipitation)과 함침법(Incipient wetness impregnation)으로 제조하였다. 제조된 촉매의 성능을 평가하기 위하여 $N_2O$ 직접 촉매 분해(Direct catalytic $N_2O$ decomposition) 반응을 $250{\sim}375^{\circ}C$에서 실시하였다. 그 결과 공침법으로 제조된 촉매(CoCe-CP)는 $O_2$ 및/또는 $H_2O$의 존재 하에서도 $N_2O$ 분해 반응에서 향상된 성능을 보인 반면에 함침법으로 제조된 촉매(CoCe-IM)는 그렇지 못하였다. 이러한 촉매 활성의 차이를 조사하기 위하여 XRD, BET, TEM, $H_2-TPR$, $O_2-TPD$ 그리고 XPS와 같은 촉매 특성 분석들을 진행하였다. 촉매의 제조 방법에 따라서 입자의 크기 및 표면적이 변화하는 것을 확인하였고 합성 과정이 촉매의 물리적 특성에 영향을 미치는 것을 알 수 있었다. 공침법으로 제조된 촉매의 활성 증가는 $Co^{3+}{\rightarrow}Co^{2+}$의 향상된 환원 특성 및 산소 탈착 속도 향상에 기인한 것으로 여겨진다. 하지만, $N_2O$ 분해와 관련이 있는 촉매의 표면 전하 상태 및 결합에너지는 제조 방법에 따라서 변하지 않는 것을 확인하였다.

Keywords

References

  1. Kapteijn, F., Rodriguez-Mirasol, J., and Moulijn, J. A., "Heterogeneous Catalytic Decomposition of Nitrous Oxide," Appl. Catal. B, 9, 25-64 (1996). https://doi.org/10.1016/0926-3373(96)90072-7
  2. Trogler, W.C., "Physical Properties and Mechanisms of Formation of Nitrous Oxide," Coordin. Chem. Rev., 187, 303-327 (1999). https://doi.org/10.1016/S0010-8545(98)00254-9
  3. Konsolakis, M., "Recent Advances on Nitrous Oxide ($N_2O$) Decomposition over Non-Noble-Metal Oxide Catalysts: Catalytic Performance, Mechanistic Considerations, and Surface Chemistry Aspects," ACS Catal., 5, 6397-6421 (2015). https://doi.org/10.1021/acscatal.5b01605
  4. Shimizu, A., Tanaka, K., and Fujimori, M., "Abatement Technologies for $N_2O$ Emissions in the Adipic Acid Industry," Chemosphere Global Change Sci., 2, 425-434 (2000). https://doi.org/10.1016/S1465-9972(00)00024-6
  5. Perez-Ramirez, J., Kapteijn, F., Schoffel, K., and Moulijn, J. A., "Formation and Control of $N_2O$ in Nitric Acid Production," Appl. Catal. B, 44, 117-151 (2003). https://doi.org/10.1016/S0926-3373(03)00026-2
  6. Marnellos, G. E., Efthimiadis, E. A., and Vasalos, I. A., "Effect of $SO_2$ and $H_2O$ on the $N_2O$ Decomposition in the Presence of $O_2$ over Ru/$Al_2O_3$," Appl. Catal. B, 46, 523-539 (2003). https://doi.org/10.1016/S0926-3373(03)00292-3
  7. Bueno-Lopez, A., Such-basanez, I., and Salinas-Martinez de Lecea, C., "Stabilization of Active $Rh_2O_3$ Species for Catalytic Decomposition of $N_2O$ on La-, Pr-Doped $CeO_2$," J. Catal., 244, 102-112 (2006). https://doi.org/10.1016/j.jcat.2006.08.021
  8. Suarez, S., Yates, M., Petre, A. L., Martin, J. A., Avila, P., and Blanco, J., "Development of a New Rh/$TiO_2$-Sepiolite Monolithic Catalyst for $N_2O$ Decomposition," Appl. Catal. B, 64, 302-311 (2006). https://doi.org/10.1016/j.apcatb.2005.12.006
  9. Russo, N., Fino, D., Saracco G., and Specchia, V., "$N_2O$ Catalytic Decomposition over Various Spinel-Type Oxides," Catal. Today, 119, 228-232 (2007). https://doi.org/10.1016/j.cattod.2006.08.012
  10. Obalova, L., Jiratova, K., Kovanda, F., Valaskova, M., Balabanova, J., and Pacultova, K., "Structure-activity Relationship in the $N_2O$ Decomposition over Ni-(Mg)-Al and Ni-(Mg)-Mn Mixed Oxides Prepared from Hydrotalcite-Like Precursors," J. Mol. Catal. A, 248, 210-219 (2006). https://doi.org/10.1016/j.molcata.2005.12.037
  11. Yan, L., Ren, T., Wang, X., Ji, D., and Suo, J., "Catalytic Decomposition of $N_2O$ over $M_xCo_{1-x}Co_2O_4$ (M = Ni, Mg) Spinel Oxides," Appl. Catal. B, 45, 85-90 (2003). https://doi.org/10.1016/S0926-3373(03)00174-7
  12. Melian-Cabrera, I., Mentruit, C., Pieterse, J. A. Z., van den Brink, R. W., Mul, G., Kapteijn F., and Moulijn, J. A., "Highly Active and Stable Ion- Exchanged Fe-Ferrierite Catalyst for N2O Decomposition Under Nitric Acid Tail Gas Conditions," Catal. Commun., 6, 301-305 (2005). https://doi.org/10.1016/j.catcom.2005.01.004
  13. Kawi, S., Liu, S., and Shen, S.-C., "Catalytic Decomposition and Reduction of $N_2O$ on Ru/MCM-41 Catalyst," Catal. Today, 68, 237-244 (2001). https://doi.org/10.1016/S0920-5861(01)00283-8
  14. Li, Y., and Armor, J. N., "Catalytic Decomposition of Nitrous Oxide on Metal Exchanged Zeolites," Appl. Catal. B, 1, L21-L29 (1992). https://doi.org/10.1016/0926-3373(92)80019-V
  15. Kim, D. S., Kim, Y. H., Yie J. E., and Park, E. D., "NO Oxidation over Supported Cobalt Oxide Catalysts," Korean J. Chem. Eng., 27, 49-54 (2010). https://doi.org/10.1007/s11814-009-0290-8
  16. Zhou, H., Huang, Z., Sun, C., Qin, F., Xiong, D., Shen, W., and Xu, H., "Catalytic Decomposition of $N_2O$ over $Cu_xCe_{1-x}O_y$ Mixed Oxides," Appl. Catal. B, 125, 492-498 (2012). https://doi.org/10.1016/j.apcatb.2012.06.021
  17. Perez-alonso, F., Melian-Cabrera, I., Lopez Granados, M., Kapteijn, F., and Fierro, J., "Synergy of $Fe_xCe_{1-x}O_2$ Mixed Oxides for $N_2O$ Decomposition," J. Catal., 239, 340-346 (2006). https://doi.org/10.1016/j.jcat.2006.02.008
  18. Terribile, D., Trovarelli, A., Llorca, J., de Leitenburg, C., and Dolcetti, G., "The Preparation of High Surface Area $CeO_2$-$ZrO_2$ Mixed Oxides by a Surfactant-Assisted Approach," Catal. Today, 43, 79-88 (1998). https://doi.org/10.1016/S0920-5861(98)00136-9
  19. Trovarelli, A., "Structural and Oxygen Storage/Release Properties of $CeO_2$-Based Solid Solutions," Comments Inorg. Chem., 20, 263-284 (1999). https://doi.org/10.1080/02603599908021446
  20. Kwak, B. H., Park, J., Yoon, H., Kim, H. H., Kim, L., and Chung, J. S., "Additive Effect of Ce, Mo and K to Nickel-Cobalt Aluminate Supported Solid Oxide Fuel Cell for Direct Internal Reforming of Methane," Korean J. Chem. Eng., 31, 29-36 (2013).
  21. Ohnishi, C., Asano, K., Iwamoto, S., Chikama, K., and Inoue, M., "Alkali-Doped $Co_3O_4$ Catalysts for Direct Decomposition of $N_2O$ in the Presence of Oxygen," Catal. Today, 120, 145-150 (2007). https://doi.org/10.1016/j.cattod.2006.07.042
  22. Asano, K., Ohnishi, C., Iwamoto, S., Shioya, Y., and Inoue, M., "Potassium-Doped $Co_3O_4$ Catalyst for Direct Decomposition of $N_2O$," Appl. Catal. B, 78, 242-249 (2008). https://doi.org/10.1016/j.apcatb.2007.09.016
  23. Yoshino, H., Ohnishi, C. H., Hosokawa, S., Wada, K., and Inoue, M., "Optimized Synthesis Method for K/$Co_3O_4$ Catalyst Towards Direct Decomposition of $N_2O$," J. Mater. Sci., 46, 797-805 (2010).
  24. Wang, H., Ye, J., Liu, Y., Li, Y., and Qin, Y., "Steam Reforming of Ethanol over $Co_3O_4$/$CeO_2$ Catalysts Prepared by Different Methods," Catal. Today, 129, 305-312 (2007). https://doi.org/10.1016/j.cattod.2006.10.012
  25. Bomben, K., Moulder, J., Sobol, P. E., and Stickle, W., "Handbook of X-ray Photoelectron Spectroscopy. A Reference Book of Standard Spectra for Identification and Interpretation of XPS data," Physical Electronics, (1995).
  26. Shen, Q., Li, L., Li, J., Tian, H., and Hao, Z., "A Study on $N_2O$ Catalytic Decomposition over Co/MgO Catalysts," J. Hazard. Mater., 163, 1332-1337 (2009). https://doi.org/10.1016/j.jhazmat.2008.07.104
  27. Niu, Y., Shang, T., Hui, S., Zhang, X., Lei, Y., Lv, Y., and Wang, S., "Synergistic Removal of NO and $N_2O$ in Low-Temperature SCR Process with $MnO_x$/Ti Based Catalyst Doped with Ce and V," Fuel, 185, 316-322 (2016). https://doi.org/10.1016/j.fuel.2016.07.122