DOI QR코드

DOI QR Code

Distributional Characteristics and Factors Related to the Population Persistence, an Endangered Plant Glaux maritima var. obtusifolia Fernald

멸종위기야생식물인 갯봄맞이꽃(Glaux maritima var. obtusifolia Fernald)의 분포특성과 개체군의 지속에 관여하는 요인

  • Kim, Young-Chul (Dept. of Biology, Gangneung-Wonju National Univ.) ;
  • Chae, Hyun-Hee (Dept. of Biology, Gangneung-Wonju National Univ.) ;
  • Oh, Hyun-Kyung (Plants Resource Division, Biological Resources Research Dept., National Institute of Biological Resource) ;
  • Lee, Kyu-Song (Dept. of Biology, Gangneung-Wonju National Univ.)
  • 김영철 (강릉원주대학교 생물학과) ;
  • 채현희 (강릉원주대학교 생물학과) ;
  • 오현경 (국립생물자원관 식물자원과) ;
  • 이규송 (강릉원주대학교 생물학과)
  • Received : 2016.10.13
  • Accepted : 2016.12.29
  • Published : 2016.12.30

Abstract

For effective conservation of endangered wild plants, it is necessary to understand their interactions with environmental factors in each habitat together with life traits of target species. First, the characteristics of their distribution were investigated followed by their monitoring for 4 years focusing on the habitats in the lagoon. Also, their life traits were compared including production of hibernacles, fruits, and seeds by the soil fertilization and light intensities. Next, the information on the species was secured by germination experiment using the generated seeds from the cultivation experiment. The habitat of Glaux maritima var. obtusifolia Fernald in Korea was located in the rear edge of the worldwide distribution and its four habitats were isolated and distributed far away each other. Two of them were located in small salt-marsh and fine sand estuaries formed in the rocky area of the seashore, and the other two were inhabited with the sandy soil in the lagoon which was connected by river-mouth to the sea. Glaux maritima var. obtusifolia Fernald tends to be distributed in the sites where the establishment and growth of the competitor were inhibited by salinity, periodic flooding, and lower layer of the soil to extend a roots. It maintained its population by recruitments of hibernacles and seedling. The production of hibernacle was assumed to be affected by the particle consist of the sand together with organic matters in the soil. Seedling recruitment was observed only in the salt-marsh area located in the rear sites of sand ridge where was the shore of the lagoon. Glaux maritima var. obtusifolia Fernald was observed to have different threatening factors by each population. Its population in Pohang seemed the sedimentation of fine sand which affected the recruitment of hibernacles had been eroded due to the construction of the coastal road. The population in Ulsan appeared rapid expansion of competitor and reduction of its distribution area due to the interruption of eluted water supplied to the habitat. On the other hand, the habitat in the lagoon maintained the population relatively stable. Especially, the population in Songji-ho was determined to be the most stable one. To sustain the population of Glaux maritima var. obtusifolia Fernald distributed in the lagoon, it is suggested that the wide ranged scale of conservational activities is necessary to maintain the mechanisms including the entrance of seawater which belongs to the lagoon, and periodic flooding.

멸종위기야생식물의 효과적인 보전을 위해서는 종이 소유하는 특성과 더불어 각 분포지에서 나타나는 환경요인과의 상호작용에 대한 이해가 필요하다. 먼저 분포특성을 조사하였고 석호의 분포지를 중심으로 4년간에 걸친 모니터링을 실시하였다. 또한 토양과 빛 조건에 따른 월동아, 열매 및 종자 생산특성을 비교하였다. 다음으로 재배실험에서 생산된 종자를 이용한 발아실험을 통해 종에 대한 정보를 확보하였다. 갯봄맞이꽃은 우리나라가 세계적인 분포의 가장자리에 해당하며 4개의 분포지는 서로 먼 거리에 격리되어 분포하였다. 2개의 분포지는 해안의 바위지대에 형성된 소규모 습지와 미사 퇴적지에 위치하였고 다른 2개 분포지는 하구가 바다와 연결되어 있는 석호에서 모래로 구성된 입지에 분포하였다. 갯봄맞이꽃은 염분과 주기적인 침수 그리고 낮은 토양층에 따라 경쟁관계에 있는 식물의 침입과 생육이 억제되는 공간에 분포하는 것으로 보였다. 갯봄맞이꽃은 월동아에 의한 보충과 종자에 의한 유묘 보충에 의해 개체군이 유지되었다. 월동아의 생산은 토양의 유기물과 더불어 모래의 입자에 의해 영향을 받는 것으로 추정되었다. 종자에 의한 유묘 보충은 호수의 가장자리에 있는 모래언덕 배후에 위치한 염습지에서만 관찰되었다. 갯봄맞이꽃 개체군 마다 서로 다른 위협요인이 존재하는 것으로 관찰되었다. 포항의 개체군은 해안도로의 개설로 월동아의 보충에 영향을 미치는 미사의 퇴적현상이 제거된 것으로 보였다. 울산의 개체군은 분포지로 유입되는 용출수의 단절로 경쟁종의 급격한 확대와 갯봄맞이꽃 분포 면적의 축소가 나타났다. 반면에 석호의 분포지는 비교적 안정적인 개체군을 유지하였다. 특별히 송지호의 개체군은 가장 안정적인 개체군으로 판단되었다. 석호에 분포하는 갯봄맞이꽃 개체군의 지속을 위해서는 석호가 소유하는 바닷물의 유입과 주기적인 침수를 포함하는 기작이 잘 유지되도록 광역적인 규모에서의 보전활동이 필요함을 제안하였다.

Keywords

References

  1. Braun-Blanquet, J. (1964) Pflanzensoziologie. 3. Springer-Verlag, New York, 865pp.
  2. Casanova, M.T. and M.A. Brock (2000) How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology 147:237-250. https://doi.org/10.1023/A:1009875226637
  3. Chesson, P. (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31: 343-346. https://doi.org/10.1146/annurev.ecolsys.31.1.343
  4. Colmer, T.D. and T.J. Flowers (2008) Flooding tolerance in halophytes. New Phytologist 179: 964-974. https://doi.org/10.1111/j.1469-8137.2008.02483.x
  5. Connell, J.H. and R.O. Slatyer (1977) Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist 111:1119-1144. https://doi.org/10.1086/283241
  6. Crawley, M.J. (1986) Plant ecology. Blackwell scientific publications, Oxford, 496pp.
  7. Crawley, M.J. and G.J.S. Ross (1990) The population dynamics of plants [and discussion]. Philosophical Transactions of The Royal Society B Biological Sciences 330: 125-140. https://doi.org/10.1098/rstb.1990.0187
  8. Dupre, C. and J. Ehrlen (2002) Habitat configuration, species traits and plant distributions. Journal of Ecology 90: 796-805. https://doi.org/10.1046/j.1365-2745.2002.00717.x
  9. Emery, N.C., P.J. Ewanchuk and M.D. Bertness (2001) Competition and salt-marsh plant zonation: stress tolerators may be dominant competitors. Ecology 82: 2471-2485. https://doi.org/10.1890/0012-9658(2001)082[2471:CASMPZ]2.0.CO;2
  10. Endangered wild species of Korea (http://www.korearedlist.go.kr/redlist/home/main.jsp) accessed August 15, 2016.
  11. Espinar, J.L., L.V. Garcia and L. Clemente (2005) Seed storage conditions change the germination pattern of clonal growth plants in Mediterranean salt marshes. American Journal of Botany 92: 1094-1101. https://doi.org/10.3732/ajb.92.7.1094
  12. Fahrig, L., D.P. Coffin, W.K. Lauenroth and H.H. Shugart (1994) The advantage of long-distance clonal spreading in highly disturbed habitats. Evolutionary Ecology 8: 172-187. https://doi.org/10.1007/BF01238248
  13. Flora of China, http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200008037: accessed August 15, 2016.
  14. Garcia, M.B., X. Pico and J. Ehrlen (2008) Life span correlates with population dynamics in perennial herbaceous plants. American Journal of Botany 95(2): 258-262. https://doi.org/10.3732/ajb.95.2.258
  15. Gleason, H.A. (1926) The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53: 1-20. https://doi.org/10.2307/2479932
  16. Grime, J.P. (1973) Competitive exclusion in herbaceous vegetation. Nature 242: 344-347. https://doi.org/10.1038/242344a0
  17. Grime, J.P. (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111:1169-1194. https://doi.org/10.1086/283244
  18. Grime, J.P. (2002) Plant strategies, vegetation processes, and ecosystem properties. John wily & sons, Ltd., New York, 417pp.
  19. Grubb, J.P. (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Reviews 52: 107-145.
  20. Hampe, A. and R.J. Petit (2005) Conservation biodiversity under climate change: the rear edge matters. Ecplogy Letters 8: 461-467. https://doi.org/10.1111/j.1461-0248.2005.00739.x
  21. Hanski, I. (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38: 210-221. https://doi.org/10.2307/3544021
  22. Hunter, Jr., M.L. and J. Gibbs (2011) Fundamentals of conservation biology. Blackwell Publishing, Oxford, 497pp.
  23. Hutchinson, G.E. (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415-427. https://doi.org/10.1101/SQB.1957.022.01.039
  24. Interagency Taxonomic Information System (ITIS) (http://www.itis.gov/) accessed August 15, 2016.
  25. Jerling, L. (1988B) Population dynamics of Glaux maritima (L.) along a distributional cline. Vegetatio 74: 161-170. https://doi.org/10.1007/BF00044741
  26. Jerling, L. (1988A) Clone dynamics, population dynamics and vegetation pattern of Glaux maritima on a Baltic sea shore meadow. Vegetatio 74: 171-185. https://doi.org/10.1007/BF00044742
  27. Joint Nature Conservation Committee (JNCC) (2004) Common standards monitoring guidance for saltmarsh habitats. Joint Nature Conservation Committee (ISSN 1743-8160 (http://jncc.defra.gov.uk)), Wales, 23pp.
  28. Jonson, D.M. (2004) Source-sink dynamics in a temporally heterogeneous environment. Ecology 85: 2037-2045. https://doi.org/10.1890/03-0508
  29. Jutila, H.M. (2003) Germination in Baltic coastal wetland meadows: similarities and differences between vegetation and seed bank. Plant Ecology 166: 275-293. https://doi.org/10.1023/A:1023278328077
  30. Keith, D.A. (1998) An evaluation and modification of World Conservation Union Red List criteria for classification of extinction risk in vascular plants. Conservation Biology 12 (5): 1076-1090. https://doi.org/10.1046/j.1523-1739.1998.97202.x
  31. Kim, Y.C., H.H. Chae, S.H. Oh, S.H. Choi, M.P. Hong, G.H. Nam, J.Y. Choi, H.S. Choi and K.S. Lee (2015) Floristic characteristics of vascular plants and first distributional report of Pseudostellaria baekdusanensis M. Kim in Yongneup wetland protected area. Korean Journal of Environment and Ecology 29: 132-144. https://doi.org/10.13047/KJEE.2015.29.2.132
  32. Kim, Y.C., H.H. Chae, B.R. Hong, H.K. Oh, K.H. Lee and K.S. Lee (2016A) The status of endangered plants distributed in the middle eastern area of Korea and evaluation of the risk factors. Korean Journal of Environment and Ecology 30: 291-307. https://doi.org/10.13047/KJEE.2016.30.3.291
  33. Kim, Y.C., H.H. Chae and K.S. Lee (2016B) Distributional characteristics and population dynamics of endangered plant, Paeonia obovata Maxim. Korean Journal of Environment and Ecology 30: 658-675. https://doi.org/10.13047/KJEE.2016.30.4.658
  34. Korea National Aboretum (KNA) (2012) Rare plants in Korea. Korea National Aboretum, Gyeonggi-do, Korea. 412pp. (in Korean)
  35. Korea Plant Name Index (http://www.nature.go.kr) : accessed August 15, 2016.
  36. Leps, J. and Smilauer P. (2007) Multivariate analysis of ecological data using CANOCO. Cambridge university press, New York, 269pp.
  37. Lerouxa, S.J, F.K.A. Schmiegelow, R.B. Lessard, and S.G. Cumming (2007) Minimum dynamic reserves: a framwork for determining reserve size in ecosystems structured by large disturbances. Biological Conservation 138: 464-473. https://doi.org/10.1016/j.biocon.2007.05.012
  38. Liancourt, P., R.M. Callaway and R. Michalet (2005) Stress tolerance and competitive-response ability determine the outcome of biotic interactions. Ecology 86:1611-1618. https://doi.org/10.1890/04-1398
  39. Lienert, J. (2004) Habitat fragmentation effects on fitness of plant population-a review. ournal of Nature Conservation 12: 53-72. https://doi.org/10.1016/j.jnc.2003.07.002
  40. MacArthur, R.H, and E.O. Wilson (1963) An equilibrium theory of insular zoogeography. Evolution 17: 373-387. https://doi.org/10.1111/j.1558-5646.1963.tb03295.x
  41. Mace, G.M., N.J. Collar, K.J. Gaston, C. Hilton-Taylor, H.R. Akcakaya, N. Leader-Williams, E.J. Milner-Gulland and S.N. Stuart (2008) Quantification of extinction risk: IUCN's system for classifying threatened species. Conservation Biology 22: 1424-1442. https://doi.org/10.1111/j.1523-1739.2008.01044.x
  42. Mayberry, R.J. and E. Elle (2010) Conservation of a rare plant requires different methods in different habitats: demographic lessons from Actaea elata. Oecologia 164: 1121-1130. https://doi.org/10.1007/s00442-010-1809-8
  43. Ministry of Environment (2012) Law of Wild animal and plants protection. Ministry of Environment.
  44. National Institute of Biological Resources (NIBR) (2012) Red data book of endangered vascular plants in Korea. National Institute of Biological Resources (NIBR), Incheon, 390pp. (in Korean)
  45. National Institute of Biological Resources (NIBR) (2013) Genetic evaluation of important biological resources: genetic diversity analysis for endangered species (2013). National Institute of Biological Resources, Incheon, 113pp. (in Korean and English abstract)
  46. Noel, F.N., E. Porcher, J. Moret and N. Machon (2006) Connectivity, habitat heterogeneity, and population persistence in Rnaunculus nodoflorus, an endangered species in France. New Phytologist 169: 71-84. https://doi.org/10.1111/j.1469-8137.2005.01572.x
  47. O'Grady, J.J., D.H. Reed, B.W. Brook and R. Frankham (2004) What are the best correlates of predicted extinction risk? Biological Conservation 118: 513-520. https://doi.org/10.1016/j.biocon.2003.10.002
  48. Pausas, J.G, and M.P. Austin (2001) Patterns of plant species richness in relation to different environments: an appraisal. Journal of Vegetation Science 12:153-166. https://doi.org/10.2307/3236601
  49. Pearman, P.B., A. Guisan, O. Broennimann and C.F. Randin (2007) Niche dynamics in space and time. Trends in Plant Science 23: 149-158.
  50. Pennings, S.C. and R.M. Callaway (1992) Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73: 681-690. https://doi.org/10.2307/1940774
  51. Pianka, E.R. (1970) On r-and K-Selection. The American Naturalist. 104: 592-597. https://doi.org/10.1086/282697
  52. Pickett, S.T.A. and Thompson J.N. (1978) Patch dynamics and the design of nature reserves. Biological Conservation 13: 27-36. https://doi.org/10.1016/0006-3207(78)90016-2
  53. Pickett, S.T.A. (1980) Non-Equilibrium coexistence of plants. Bulletin of the Torrey Botanical Club 107: 238-248. https://doi.org/10.2307/2484227
  54. Reznick, D., Bryant M.J. and Bashey F. (2002) r- and K-selection revisited: the role of population regulation in life-history evolution. Ecological Society of America 83: 1509-1520.
  55. Roxburgh, S.H., Shea K. and Wilson J.B. (2004) The intermediate disturbance hypothesis:patch dynamics and mechanisms of species coexistence. Ecology 85(2): 359-371. https://doi.org/10.1890/03-0266
  56. Rozema, J., D.A.G. Buizer and H.E. Fabritius (1978) Population dynamics of Glaux maritima and ecophysiological adaptations to salinity and inundation. Oikos 30: 539-548. https://doi.org/10.2307/3543349
  57. Rozema, J. and I. Riphagen (1977) Physiology and ecologic relevance of salt secretion by the salt gland of Glaux maritima L. Oecologia 29: 349-357. https://doi.org/10.1007/BF00345808
  58. Silvestri, S., A. Defina and M. Marani (2005) Tidal regime, salinity and salt marsh plant zonation. Estuarine, Costal and Shelf Science 62: 119-130. https://doi.org/10.1016/j.ecss.2004.08.010
  59. Soldano, A., E. Banfi and G. Galasso (2005) Notes on systematics and taxonomy for the Italian vascular flora. I. Atti della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 145: 219-244.
  60. Sousa, W.P. (1984) The role of disturbance in natural communities. Annual Review of Ecology and Systematics 15: 353-391. https://doi.org/10.1146/annurev.es.15.110184.002033
  61. Werner, K.J. and J.B. Zedler (2002) How sedge meadow soils, microtopography, and vegetation respond to sedimentation. Wetlands 22: 451-466. https://doi.org/10.1672/0277-5212(2002)022[0451:HSMSMA]2.0.CO;2