• Title/Summary/Keyword: particle phase

Search Result 1,786, Processing Time 0.026 seconds

Effects of Fuel-Injection Pressure on the Spray Breakup Characteristics in Small LRE Injector (소형 액체로켓엔진 인젝터의 분무 분열특성에 대한 연료분사압력의 영향)

  • Jung, Hun;Kim, Sung-Cho;Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.50-57
    • /
    • 2007
  • Spray characteristics of an injector in a small liquid rocket engine (LRE) is characterized by Particle Image Velocimetry (PIV) and Dual-mode Phase Doppler Anemometry (DPDA). Instantaneous plane images captured by PIV are examined for the qualitative prediction of spray breakup with the setup of evaluation technique for effect of spray angles on injector performance. DPDA is also applied in order to quantify the average velocity, turbulent intensity, SMD, and number density of spray droplets along the spray stream distance leading to precise observation of spray atomization behavior. An objective of the study is the derivation of design parameters of new injectors and the establishment of performance criteria through the clear understanding of spray characteristics.

Effects of Electrohydrodynamic Flow and Turbulent Diffusion on Collection Efficiency of an Electrostatic Precipitator with Cavity Walls

  • Park, Seok-Joo;Park, Young-Ok;Kim, Sang-Soo;McMurry, Peter H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.97-103
    • /
    • 2001
  • The effects of the electrohydrodynamic (EHD) flow and turbulent diffusion on the collection efficiency of a model ESP composed of the plates with a cavity were studied through numerical computation. The electric field and ion space charge density were calculated by the Poisson equation of the electrical potential and the current continuity equation. The EHD flow field was solved by the continuity and momentum equations of the gas phase including the electrical body force induced by the movement of ions under the electric field. The RNG $k-{\varepsilon}$ model was used to analyze the turbulent flow. The particle concentration distribution was calculated from the convective diffusion equation of the particle phase. As the ion space charge increased, the particulate collection efficiency increased because the electrical potential increased over the entire domain in the ESP. The collection efficiency decreased and then increased, i.e. had a minimum value, as the EHD circulating flow became stronger when the electrical migration velocity of the charged particle was low. However, the collection efficiency decreased with the stronger EHD flow when the electrical migration of the particle was higher relatively. The collection efficiency of the model ESP increased as the turbulent diffusivity of the particle increased when the electrical migration velocity of the particle was low. However, the collection efficiency decreased for increasing the turbulent diffusivity when the electrical migration of the particle was higher relatively.

  • PDF

Photo Catalytic Ability of Acicular Shaped TiO$_{2}$ Rutile Powder in Aqueous Metal-EDTA Solutions

  • Kim, Sun-Jae;chang-Joo choi;Park, Soon-Dong;Hwang, Jong-Sun;Han, Byung-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.37-41
    • /
    • 2001
  • Photo catalytic characteristics of nano-sized TiO$_2$ powder with rutile phase produced using homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial P-25 powder by Degussa Co. The TiO$_2$ powder by HPPLT showed very higher photoactivity in the removal rate, showing lower pH values in the solution, than the P-25 powder when eliminating metal ions such as Pb and Cu from aqueous metal-EDTA solutions. This can be inferred the more rapid photo-oxidation or -reduction of metal ions from the aqueous solution, together with relatively higher efficiencies in the use of electron-hole pair formed on the surface of TiO$_2$ particle, under UV light irradiation. Also, in the view of the TiO$_2$ particle morphology, compared to the well-dispersed spherical P-25 particle, the agglomerated TiO$_2$ particle by HPPL T consists of acicular typed primary particle with the thickness ranged of 3∼7 nm, which would be more effective to the photocatalytic reactions without electron-hole recombination on the surface of the TiO$_2$ particle under the UV light irradiation. It is, therefore, thought that the higher photo activity of the rutile TiO$_2$ powder by HPPLT in the aqueous solutions resulted from having its higher specific surface area as well as acicular shape primary particle with very thin thickness.

  • PDF

Microstructures and Mechanical Properties of SiCp/ Al-Si-Mg Alloy Composites Fabricated by Rheo-compocasting and Hot Extrusion (Rheo-compocasting 및 열간압출에 의하여 제조한 Al-Si-Mg / SiC 입자강화 복합재료의 조직 및 기계적 특성)

  • Lee, Hag-Ju;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.12 no.4
    • /
    • pp.335-345
    • /
    • 1992
  • Aluminum alloy matrix composites reinforced with various amounts of SiC particles have been produced by rheo-compocasting followed by hot extrusion. A relatively uniform distribution of SiC particles in the composites was obtained. The amounts of pore and SiC particles cluster were relatively small in the composites. Particle free zones were observed in the hot extruded composites when the amount of SiC particles was less than 20 vol%. However, the width of particle free zone decreases with the increase of SiC particle content. Eutectic Si phase play an important role for improving bonding between SiC particle and matrix. Tensile and yield strength increased with the increase of SiC particle content. the strenthening effect of SiC particle addition was effective even at relatively high temperature of 573 K.

  • PDF

Effect of the Process Parameters on the Fe Nano Powder Formation in the Plasma Arc Discharge Process (플라즈마 아크 방전법에서 Fe 나노 분말 형성에 미치는 공정변수의 영향)

  • 이길근;김성규
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • To investigate the effect of the parameters of the plasma arc discharge process on the particle formation and particle characteristics of the iron nano powder, the chamber pressure, input current and the hydrogen volume fraction in the powder synthesis atmosphere were changed. The particle size and phase structure of the synthesized iron powder were studied using the FE-SEM, FE-TEM and XRD. The synthesized iron powder particle had a core-shell structure composed of the crystalline $\alpha$-Fe in the core and the crystalline $Fe_3O_4$ in the shell. The powder generation rate and particle size mainly depended on the hydrogen volume fraction in the powder synthesis atmosphere. The particle size increased simultaneously with increasing the hydrogen volume fraction from 10% to 50%, and it ranged from about 45nm to 130 nm.

Development of Digital Particle Holographic System for Measurements of the Characteristics of Spray Droplets (분무 액적 특성 계측을 위한 디지털 입자 홀로그래피 시스템의 개발)

  • Yan, Yang;Kang, Bo-Seon
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.53-60
    • /
    • 2010
  • This study presents development of digital particle holographic system and its application to spray field to measure three-dimensional velocities and sizes of spray droplets. A double exposure hologram recording system with synchronization system for time control was established and digital holograms can be recorded in a short time interval. To process recorded holograms, the correlation coefficient method was used for focal plane determination of particles. To remove noises and improve the quality of holograms and reconstructed images, the Wiener filter was adopted. The two-threshold and image segmentation methods were used in binary image transformation. For particle pairing, the match probability method was adopted. The developed system was applied to spray field and three-dimensional velocities and sizes of spray droplets were measured. The measurement results of digital holographic system were compared with those made by laser instruments, PDPA(Phase Doppler Particle Analyzer), which proved the feasibility of in-line digital particle holographic system as a good measurement tool for spray droplets.

Fabrication and Mechanical Properties of A356/SiCp Manufactured by Gas-Particle Co-injection Method (가스-입자 동시주입법에 의한 A356/SiCp 복합재료의 제조 및 기계적 특성)

  • Lee, Jung-Mu;Kang, Suk-Bong;Eum, Chil-Yong;Lim, Cha-Yong
    • Journal of Korea Foundry Society
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 2001
  • Among the many techniques available to synthesis metal matrix composites, liquid phase processing, especially, conventional casting process such as stir-casting process is particularly attractive for their simplicity, economy and flexibility, In the present study, A356/20%SiCp composites were fabricated by gas-particle co-injection method. The gas-particle co-injection method is a modified stir-casting method and the corporation of particle could be improved by acceleration of particles due to rotation of impeller and gas purging. The microstructures and mechanical properties such as tensile properties and resistance to wear of fabricated materials were examined. Further, the particle injection mechanism in gas-particle co-injection method was discussed.

  • PDF

Development of an Infrared Two-color Probe for Particle Cloud Temperature Measurement

  • Alshaikh Mohammed, Mohammed Ali;Kim, Ki Seong
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.230-235
    • /
    • 2015
  • The demands for reliable particle cloud temperature measurement exist in many process industries and scientific researches. Particle cloud temperature measurements depend on radiation thermometry at two or more color bands. In this study, we developed a sensitive, fast response and compact online infrared two-color probe to measure the temperature of a particle cloud in a phase of two field flow (solid-gas). The probe employs a detector contained two InGaAs photodiodes with different spectral responses in the same optical path, which allowed a compact probe design. The probe was designed to suit temperature measurements in harsh environments with the advantage of durability. The developed two-color probe is capable of detecting particle cloud temperature as low as $300^{\circ}C$, under dynamic conditions.

Anaerobic Hydrogen Fermentation of Food Waste Treated by Food Waste Disposer (주방용 오물분쇄기로 처리된 음식물류 폐기물의 혐기성 수소 발효)

  • Choi, Jae Min;Lee, Chae Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.468-474
    • /
    • 2014
  • This study was conducted to evaluate the characteristics of mesophilic fermentative $H_2$ production from food waste which was treated by food waste disposer. It was found that $H_2$ yield and lag phase were affected by particle size of food waste. The $H_2$ yield decreased with increasing particle size while lag phase increased. The maximum $H_2$ yield was found $0.584{\pm}0.03$ mol $H_2$/mol hexose at particle size smaller than 0.30 mm. The $H_2$ production rate was also affected by chemical composition of food waste. The $H_2$ production rate linearly decreased with increasing proteins to carbohydrates ratio(P/C ratio) where the maximum value was $0.031{\pm}0.006$ mol $H_2$/mol hexose h at 0.17.

Effects of Two Phase Flow on Erosion Characteristic in a Rocket Nozzle (2상 유동에 의한 로켓 노즐 마모 특성에 대한 고찰)

  • 김완식;유만선;조형희;배주찬
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.83-92
    • /
    • 1999
  • A numerical analysis of two phase flow in the solid rocket nozzle was conducted. Stoke number was defined over the various aluminum oxide($AI_2$$O_3$) particle sizes and particle trajectories were treated by Lagrangian approach. Particle stability was considered by the definition of Weber number in a rocket nozzle. Large particles are divided after the nozzle throat as the flow accelerates rapidly. The division of particles changes the particle distribution at the nozzle exit. From the above results, it was found that the nozzle converge section surface might be affected by aluminum oxide particles. Also, Mechanical erosion rate of nozzle surface was predicted for different materials.

  • PDF