• Title/Summary/Keyword: particle generator

Search Result 104, Processing Time 0.026 seconds

Development and Performance Evaluation of a Liquid Particle Generator (액적 발생 장치 개발 및 성능 평가)

  • Heo, Jung-Hyuk;Kim, Dae-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4334-4340
    • /
    • 2012
  • In this work, we developed and evaluated the Liquid Particle Generator for generating fine particles in the air. The Liquid Particle Generator, which was based on the spray-evaporation method, had two kinds of orifices: 0.3 mm and 0.5 mm. The Liquid Particle Generator was operated at different pressure between 1 bar and 4 bars to find relationship between input pressure and droplet output rate. In addition, the size distribution of the droplets generated by the Liquid Particle Generator with different orifices was measured by the SMPS system and the optical particle counter. As a result, it was shown that the Liquid Particle Generator with 0.3 mm orifice generated droplets of around 0.3 ${\mu}m$ and atomized particles very stably. The Liquid Particle Generator having 0.5 mm orifice generated bigger droplets, compared with the Liquid Particle Generator with 0.3 mm orifice. Additionally, in these Liquid Particle Generators (0.3 mm and 0.5 mm orifice), little coagulation of particles did occur because of fine droplets atomized by the jet. Therefore, the Liquid Particle Generator could be used as an aerosol generator for atomizing fine particles.

Development and performance evaluation of a test particle generator for a field inspection equipment of PM-2.5 sensors (미세먼지 간이측정기 현장 검사용 시험 입자 발생기 개발 및 성능 평가)

  • Chung, Hyeok;Park, Jin-Soo
    • Particle and aerosol research
    • /
    • v.18 no.3
    • /
    • pp.61-68
    • /
    • 2022
  • In this study, a fluidized bed particle generator was developed to generate an aerosol without supply of compressed air and to increase portability. It was assumed that the mixing ratio of the test particles and beads, the input amount, and the air flow rate supplied to the generator would have effect on the aerosol generation characteristics. The product of these three parameters was set as a characteristic parameter and particle generation characteristics according to the change of the characteristic parameter were observed. As a result, it was confirmed that the input amount of test particles and beads was not suitable as a characteristic parameter and a characteristic parameter expressed as a product of the mass mixing ratio and the air flowrate was newly defined. When the new characteristic parameter is applied, it can be confirmed that the total amount of particles generated from the particle generator is a function of the characteristic parameter. As a result of measuring the amount of particle generation by adjusting the characteristic parameter, it was confirmed that the performance required for the test particle generator for the field inspection equipment of PM-2.5 sensors could be satisfied.

Design and Performance Test of Fungal Aerosol Generator using Vibration Method (진동 방식을 이용한 곰팡이 공기 부유화 장치의 설계 및 성능 평가)

  • Ahn, Ji-Hye;Lee, Sang-Gu;Park, Chul Woo;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.143-150
    • /
    • 2012
  • Fungal particles have been known to aggravate indoor air quality. To develop fungal particle cleaning devices requires a well-controlled generator of fungal aerosol particles. In this study, a novel fungal aerosol generator was designed and tested for anti-fungal experiment. Cladosporium cladosporioides was selected as test fungal particle. After aerosolization, the number concentration and the size of particles were measured by aerodynamic particle sizer. The number concentration depended on the vibration strength and vibration period of the designed fungal aerosol generator. For the vibration strength of 10volt and the period of 10 sec (5 sec on and 5 sec off), the stable particle generation with concentration of 10#/cm3 was maintained during 35 minutes.

Development of mass aerosol particle generator and fabrication of commercial anti-viral air filter (대용량 입자 발생 장치 개발 및 이를 이용한 항바이러스 공조용 공기필터 제조)

  • Park, Dae Hoon;Joe, Yun Haeng;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.151-159
    • /
    • 2016
  • Since airborne viruses have been known to aggravate indoor air quality, studies on development of anti-viral air filter increase recently. In this study, a mass aerosol particle generator for coating a commercial air filter (over $300{\times}300mm^2$) was built, and evaluated by comparing a commercial particle generator. Then, via this device, a commercial air filter was coated with anti-viral material ($SiO_2-Ag$ nanoparticles in this study), so fabrication of commercial anti-viral air filter was performed and the pressure drop, filtration efficiency, and anti-viral ability of the filter were evaluated against aerosolized bacteriophage MS2 in a continuous air flow condition. The result showed that the particle generation of the new generator was more than about 8.5 times over which of the commercial one. Consequently, $SiO_2-Ag$ particle coating on a filter does not have significant effects on the filtration efficiency and pressure drop with different areas, and the average anti-viral efficiency of the $SiO_2-Ag$ filter was about 92% when the coating areal density was $1.0{\times}10^{12}particles/m^2$.

An Experimental Study on the Characteristics of Generated Particle using Homogeneous Condensation Particle Generator (응축입자 발생기에서의 입자 발생특성에 관한 실험적 연구)

  • Kim, J.H.;Kim, S.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.392-397
    • /
    • 2000
  • Mono-disperse particles generated by a condensation particle generator are widely used to meet the experimental and industrial needs. The characteristics of particles generated by homogeneous nucleation have been studied experimentally using a laminar flow condensation particle generator. Dry nitrogen gas saturated with oleic acid vapor was cooled well below the saturation temperature causing the highly supersaturated vapor to nucleate. The dependence of GSD(Geometric Standard Deviation), GMD(Geometric Mean Diameter), and the mass concentration of particles on the temperature at the evaporator, flow rate and the temperature condition at condenser was studied. The experimental results show that the mass concentration of particles is affected by the radial temperature profile at condenser. Nucleation at the center of the condenser causes the mass concentration of particles to increase. The experimental results also show that the suppression of additional nucleation by a constant temperature condition at the condenser increases the mean diameter of particle.

  • PDF

A Study on Parameter Estimation of the Synchronous Generator System based on the Modified PSO (PSO 기반 동기발전기 시스템 모델정수 추정에 관한 연구)

  • Choi, Hyung-Joo;Kim, In-Soo;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.8-15
    • /
    • 2015
  • This paper includes a method for estimating the parameter of a synchronous generator and exciter using the modified particle swarm optimization. A solid round rotor synchronous generator and exciter have been modeled with the saturation function. They are regarded as state of being cooperative to a infinite bus. The behavior characteristic of all particles assigned to a parameter needs to be reflected in the PSO algorithm to fine out more close result to the optimal solution. The results of the simulation to estimate the parameters of the synchronous generator and exciter in the modified PSO algorithm are described.

The Effect of Water Droplets on the Nano Particle Size Distribution using the SMPS System (SMPS 시스템에서 용매(물)가 나노입도측정결과에 미치는 영향)

  • Hwangbo, Seon-Ae;Chu, Min-Cheol
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.129-133
    • /
    • 2013
  • In this paper we have studied the effect of water droplet size on nano-particle size distribution using SMPS(Scanning Mobility Particle Sizer)system. It can be seen that the unknown peak at >100 nm was caused by water droplets which did not dry completely when DI water was used as a solvent in the SMPS system. Therefore, it is important to dry water droplets generated from atomizer in the SMPS system when measuring the particle size distribution using less than 100 nm nano-particles in diameter. From this study, It can be concluded that the napion was a useful material as dryer ones and using EAG(Electro Aerosol Generator) as a particle generator was the most effective in reducing the effect of water droplets.

Implementation of Code Generator of Particle Filter

  • Lee, Yang-Weon
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.493-497
    • /
    • 2010
  • This paper address the problem of tracking multiple objects encountered in many situation in developing condensation algorithms. The difficulty lies on the fact that the implementation of condensation algorithm is not easy for the general users. We propose an automatic code generation program for condensation algorithm using MATLAB tool. It will help for general user who is not familiar with condensation algorithm to apply easily for real system. The merit of this program is that a general industrial engineer can easily simulate the designed system and confirm the its performance on the fly.

A Study on the Improvement of PIV Performance (PIV의 성능개선에 관한 연구)

  • 이영호;김춘식;최장운
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.34-42
    • /
    • 1994
  • The present study is aimed to improve the PIV performance by suggesting a two-frame particle identification technique and by introducing estimation method of wall pressure distribution from the velocity data. Adopted image processing system consists of one commercial image board slit into a personal computer, 2-D sheet light generator, flow picture recording apparatus and related particle identification software. A revised particle tracking method essential to PIV performance is obtained by particle centroid correlation pairing (CCP) and its effectiveness is ascertained by comparison with multi-frame identification.

  • PDF