• Title/Summary/Keyword: particle flow

검색결과 2,371건 처리시간 0.026초

오일러리언 접근법을 이용한 기류제트에 의한 가스-입자 2상 난류 유동특성 모델링 연구 (A Study on Numerical Modeling of Turbulent Gas-Particle Flows in a rectangular chamber Using Eulerian-Eulerian Method)

  • 김태국;민동호;윤경범;장희철
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.202-208
    • /
    • 2006
  • The purpose of this research is to model numerically the turbulent gas-particle flows in a rectangular chamber using Eulerian-Eulerian Method. A computer code using the ${\kappa}-{\varepsilon}-Ap$ two-phase turbulence model is developed for the numerical study. This code and the Eulerian multiphase model in FLUENT were used for the numerical simulations of the two-phase flow in a rectangular chamber. The numerical results calculated by the two different turbulent gas-particle codes have shown that the ${\kappa}-{\varepsilon}-Ap$ model results in a stronger diffusion of the flow momentum in the gas-particle turbulence interaction than the Eulerian multiphase model in FLUENT.

  • PDF

Effect of Carrier Solutions on Particle Retention in Flow Field-Flow Fractionation

  • 문명희
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권7호
    • /
    • pp.613-619
    • /
    • 1995
  • The influence of carrier solutions on particle retention was studied by varying surfactants and ionic strength in flow field-flow fractionation. Experiments were made with five different submicron polystyrene latex standards at three different types of surfactants and seven different ionic strengths. Departures in particle retention from the general theory were observed. At low ionic strength, it is shown that migrating sample zone is clearly lifted away from the ideal equilibrium height and that the repulsive interaction dominates between the particle and the channel wall. As ionic strength increases up to a certain level, particle retention becomes closer to the general theory. Further increase in ionic strength is shown to prolong the retention. An optimum regime of ionic strength is also suggested with the proper choice of surfactants.

입자 석션유동에 따른 레이저 표면가공의 마이크로 흄 오염입자 산포 특성 해석연구 (Numerical Simulation on Dispersion of Fume Micro-Particles by Particle Suction Flows in Laser Surface Machining)

  • 김경진
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.1-6
    • /
    • 2023
  • In CO2 laser surface machining of plastic films in modern display manufacturing, scattering of fume particles could be a major source of well-recognized film surface contamination. This computational fluid dynamics research investigates the suction air flow patterns over a film surface as well as the dispersion of micron-sized fume particles with low-Reynolds number particle drag model. The numerical results show the recirculatory flow patterns near laser machining point on film surface and also over the surface of vertical suction slot, which may hinder the efficient removal of fume particles from film surface. The dispersion characteristics of fume particles with various particle size have been tested systematically under different levels of suction flow intensity. It is found that suction removal efficiency of fume particles heavily depends on the particle size in highly nonlinear manners and a higher degree of suction does not always results in more efficient particle removal.

  • PDF

에너지소비를 고려한 실내공기청정기의 풍량별 입자 청정화능력 분석 (Analysis on Particle Cleaning Capacity of Indoor Air Cleaners for Different Flow Rates Considering Energy Consumption)

  • 한방우;강지수;김학준;김용진;원효식
    • 한국입자에어로졸학회지
    • /
    • 제9권3호
    • /
    • pp.139-147
    • /
    • 2013
  • The performances of indoor air cleaners including particle cleaning capacity and collection efficiency are usually tested at the condition of the maximum air flow rate of the air cleaners. However, the power consumption of the air cleaners is highly dependent on the air flow rate of the individual air cleaners. Therefore, there seems to be an optimized air flow rate for the air cleaning capacity considering power consumption. In this study, clean air delivery rate(or standard useful area as suggested room size) and power consumption have been investigated for different maximum air flow rates of 15 air cleaners and then compared those for different air flow rate modes of the individual 5 air cleaners selected from the 15 cleaners. For the maximum air flow rate conditions of 15 air cleansers, the power consumption per unit area was less related to the maximum air flow rate. However, for the different air flow rate modes of the selected 5 air cleaners, the lower power consumption per unit area was corresponding to the lower air flow rate mode of the individual air cleaners. When considering the operation time to the desired particle concentrations, there was an optimized one in the medium air flow rate modes for the individual air cleaners. Therefore, not only the maximum air flow rate but also lower air flow rates of individual air cleaners should be considered for estimating air cleaning capacity based on energy consumption per unit area.

Effects of Electrohydrodynamic Flow and Turbulent Diffusion on Collection Efficiency of an Electrostatic Precipitator with Cavity Walls

  • 박석주;박영옥;김상수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.97-103
    • /
    • 2001
  • The effects of the electrohydrodynamic (EHD) flow and turbulent diffusion on the collection efficiency of a model ESP composed of the plates with a cavity were studied through numerical computation. The electric field and ion space charge density were calculated by the Poisson equation of the electrical potential and the current continuity equation. The EHD flow field was solved by the continuity and momentum equations of the gas phase including the electrical body force induced by the movement of ions under the electric field. The RNG $k-{\varepsilon}$ model was used to analyze the turbulent flow. The particle concentration distribution was calculated from the convective diffusion equation of the particle phase. As the ion space charge increased, the particulate collection efficiency increased because the electrical potential increased over the entire domain in the ESP. The collection efficiency decreased and then increased, i.e. had a minimum value, as the EHD circulating flow became stronger when the electrical migration velocity of the charged particle was low. However, the collection efficiency decreased with the stronger EHD flow when the electrical migration of the particle was higher relatively. The collection efficiency of the model ESP increased as the turbulent diffusivity of the particle increased when the electrical migration velocity of the particle was low. However, the collection efficiency decreased for increasing the turbulent diffusivity when the electrical migration of the particle was higher relatively.

  • PDF

음속 및 초음속 노즐을 통한 Gas-Solid Suspension 유동에 대한 해석적 연구 (Analytical Study on the Gas-Solid Suspension Flows through Sonic and Supersonic Nozzles)

  • ;;김희동
    • 한국추진공학회지
    • /
    • 제17권1호
    • /
    • pp.9-17
    • /
    • 2013
  • Gas-solid suspension 유동에서의 입자운동과 그 운동이 유동장에 미치는 영향을 명시하고, 이 유동에 대한 이해를 얻기 위해 많은 연구가 수행 되어 왔다. 본 논문에서는 gas-solid suspension 유동에 대한 노즐의 입구/출구 압력비, 입자/기체 부하, 입자의 직경에 따른 영향 등을 연구하기 위한 분석적 모델을 개발 하였다. 노즐을 통한 유량, Mach수, 추력계수 및 정압 변화에 대한 입자/기체 부하의 영향을 분석하였다. 그 결과로부터 입자의 존재로 인해 충격파의 강도가 줄어드는 것으로 판단되며, 입자직경이 커질수록 속도는 작아지고, slip velocity는 커지게 될 것이다. 또한, 더 작은 직경의 입자에 대한 suspension 유동은 이상기체에 대한 단상유동의 결과와 같은 경향이 나타나며, 주위 압력에 따라 더 큰 입자/기체 부하나 배압비에 대한 추력계수가 더 크게 나타났다.

미분탄 입자들의 배열에 따른 연소특성 (Combustion Characteristics of Coal Particle Array)

  • 조종표;김호영;정진택
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.117-123
    • /
    • 2004
  • The burning characteristics of interacting coal particles in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged particles, both the fixed particle distances of 5 radii to 20 radii horizontally and 3 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis reveal that the transient flame configuration and retardation of particle temperature augmentation with the horizontal or vertical particle spacing substantially influence devolatilization process and carbon conversion ratio of interacting particles. Volatile release and carbon conversion ratio of the second particle with decreasing horizontal and vertical particle spacing decrease gradually, whereas those of the first particle with decreasing vertical particle spacing increases due to flow acceleration. When the vertical particle spacing is smaller than $6R_{o}$, volatile release and carbon conversion ratio of the second particle decrease greatly due to reduction of flame penetration depth.

  • PDF

원심 오일필터 유동 해석을 통한 필터링 효율 분석 (Numerical Analysis of Fluid Flow and Filtering Efficiency in Centrifugal Oil Filter)

  • 방광현;김경규;송영아;김평수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.867-872
    • /
    • 2009
  • In centrifugal oil filters particles are forced to move toward the filter casing wall by centrifugal force in the rotating oil flow and the particles are trapped and removed on the filter paper installed at the wall. In the present study, flow field of oil and particle motion in a centrifugal oil filter has been numerically calculated in order to estimate the filtering efficiency for various operating conditions. Fluent code was used for the numerical calculations. Uncoupling the oil flow and the particle motion and the use of particle tracking trajectory enabled the estimation of filtering efficiency for various particle sizes, particle density and the filter rotational speed. Higher filtering efficiency was observed for heavier and larger particles as well as higher filter rotational speed. For the typical case of the particle density of $6000kg/m^3$ and the particle size of $10{\mu}m$ at 3500 RPM, the calculated filtering efficiency per passage was 0.31.

Simulating flow-induced fiber motion with finite element based explicit coupling method

  • Diwei Zhang;Xiaobo Peng;Dongdong Zhang
    • Advances in Computational Design
    • /
    • 제9권3호
    • /
    • pp.229-252
    • /
    • 2024
  • This paper presents a finite element based explicit coupling method. The derived method is proposed to solve a certain type of fluid-structure interaction problem, which is the motion of a single or flexible fiber with the motion induced by the low-Reynolds-number fluid. The particle motion is treated as a non-linear geometric dynamic problem. The Total-lagrangian finite element method is applied to describe and discretize the particle domain. The Bathe method is used to integrate the time domain. The Stokes equation is used as the governing equation of the fluid domain. The inertia term of the Stokes equation is ignored, and Reynolds number flow is assumed as zero. Since the time term is also canceled, we solve it as a quasi-static problem. Mixed finite element is to solve the fluid equation. An explicit strategy is implemented to couple the particle and the zero-Reynolds number flow. Simulations with the proposed method are presented, including the motion of single and double rigid particle immersed in the double Couette flow and the Poiseuille flow. Simulation of single flexible fiber immersed in a Poiseuille flow is also presented. Effect of particle's density, aspect ratio, and geometry are discussed.

산업용 교반기의 고체-액체 혼합에 대한 Eulerian Two-Phase 유동해석 (Eulerian Two-Phase Flow Analysis for Solid-Liquid Mixing in a Industrial Mixer)

  • 송애경;허남건;원찬식;안익진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.471-474
    • /
    • 2006
  • The Mixer is apparatus that help precipitation or an inhomogeneous distribution of various phases to be mixed and that user makes necessary material mixing one or the other. Mainly the mixer which is used from chemical and food industry is very important system in engineering that mixes the material. The inside flow of the mixer under the actual states which put a basis in flow of the fluid is formed rotation of the impeller. The inside flow of impeller will be caused by various reasons change with shape of impeller, number of rotation, mixing material and flow pattern of free surface etc. Also mixer study depended in single-phase flow and experimental research. So the numerical analysis of flow mixing solid-fluid particle is simulated. It is become known, that the case where agitator inside working fluid includes the solid particle the sinkage reverse which the solid particle has decreases an agitation efficiency. From the research which it sees the hazard solid which examines the effect where the change of the sinkage territory which it follows agitation number of revolution and diameter of the particle goes mad to an agitator inside flow distribution - numerical analysis the inside flow distribution of liquid state with Eulerian Two-Phase Method.

  • PDF