• Title/Summary/Keyword: particle entrainment

Search Result 37, Processing Time 0.021 seconds

Characteristics of Shear Layer Vortices in Crossflow Jets According to the Inlet Conditions (초기조건변화에 따른 횡단류 제트 유동의 전단층와류 거동 특성)

  • Kim, Gyeong-Cheon;Kim, Sang-Gi;Yun, Sang-Yeol;Lee, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.394-401
    • /
    • 2002
  • The instantaneous flow characteristics of a round jet issuing normally into a crossflow has been studied using a flow visualization technique and particle image velocimetry. The effects of parameters such as jet inflow profile and turbulence intensity of the jet are evaluated for various Reynolds numbers in range between 735 and 3150, which are based on the crossflow velocity and jet-pipe diameter. The jet-to-crossflow velocity ratio is fixed at the value of 3.3. Instantaneous later tomographic images of the symmetry plane of the crossflow jet show that there exist very different natures in the flow structures of the near-field of the jet even though the velocity ratio is same. It is found that when the turbulence intensity of jet is elevated, the shear layer becomes much thicker due to the strong entrainment of the ambient fluid by turbulent interaction between the jet and crossflow. The detailed characteristics of instantaneous velocity and vorticity fields are presented to illustrate the effects of the above parameters on the vertical structures of the crossflow jet.

Theoretical Analysis on the Heat Transport Limitation of a Sintered Metal Wick Heat Pipe (소결윅 히트파이프의 열수송 한계에 관한 이론적 해석)

  • Kim Keun-Bae;Kim Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.16-25
    • /
    • 2004
  • Theoretical analysis for predicting the heat transport limitation of a copper powder sintered wick heat pipe was performed. The heat pipe diameter was 8mm and water was used for working fluid. The particle diameter was classified by 5 different meshes, and each capillary pressures and heat transport limitations. thermal resistances were analyzed according to the operating temperatures, wick thicknesses and inclination angles, based on the effective capillary radius($r_c$), porosity($\varepsilon$), Permeability (K). The wick capillary limitation was increased according as the particle diameter and the wick thickness and the operating temperature were increased. As the porosity and the capillary radius were larger. then the heat transport limitation was higher. The thermal resistance was greatly increased according as the wick thickness was increased.

Behavior of Radioactive Metal Surrogates Under Various Waste Combustion Conditions

  • Yang, Hee-Chul;Lee, Jae-Hee;Kim, Jung-Guk;Yoo, Jae-Hyung;Kim, Joo-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.80-89
    • /
    • 2002
  • A laboratory investigation of the behavior of radioactive metals under the various waste combustion atmospheres was conducted to predict the parameters that influence their partitioning behavior during waste incineration. Neodymium, samarium, cerium, gadolinium, cesium and cobalt were used as non-radioactive surrogate metals that are representative of uranium, plutonium, americium, curium, radioactive cesium, and radioactive cobalt, respectively. Except for cesium, all of the investigated surrogate metal compounds converted into each of their stable oxides at medium temperatures from 400 to 90$0^{\circ}C$, under oxygen- deficient and oxygen-sufficient atmospheres (0.001-atm and 0.21-atm $O_2$). At high temperatures above 1,40$0^{\circ}C$, cerium, neodymium and samarium in the form of their oxides started to vaporize but the vaporization rates were very slow up to 150$0^{\circ}C$ . Inorganic chlorine (NaCl) as well as organic chlorine (PVC) did not impact the volatility of investigated Nd$_2$O$_3$, CoO and Cs$_2$O. The results of laboratory investigations suggested that the combustion chamber operating parameters affecting the entrainment of particulate and filtration equipment operating parameters affecting particle collection efficiency be the governing parameters of alpha radionuclides partitioning during waste incineration.

A Basic Study of the Behavior Characteristics of Diesel Spray and Natural-gas Jet (디젤 분무와 천연 가스 분류의 거동 특성에 관한 기초 연구)

  • Yeom, J.K.;Kim, M.C.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.13-21
    • /
    • 2009
  • This basic study is required to examine spray or jet behavior depending on fuel phase. In this study, analyses of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray and natural gas fuel(Methane, $CH_4$) jet under high temperature and pressure are performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the exciplex fluorescence method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT) and of a natural gas jet is analyzed by using Multi-Component Model(MCM). There are two study variables considered, that is, ambient pressure and injection pressure. In a macroscopic analysis, the higher ambient pressure is, the shorter spray or jet tip penetration is at each time after start of injection. And the higher injection pressure is, the longer spray or jet tip penetration is at each time after start of injection. When liquid fuel is injected, droplets of the fuel need some time to evaporate. However, when natural gas fuel is injected, the fuel does not need time to evaporate. Gas fuel consists of minute particles. Therefore, the gas fuel is mixed with the ambient gas more quickly at the initial time of injection than the liquid fuel is done. The experimental results also validate the usefulness of this analysis.

  • PDF

Transport Process and Directly Entrainment Possibility into the Yellow Sea of Todarodes Pacificus Winter Cohort (살오징어(Todaroes pacificus) 겨울발생군의 이동패턴 및 직접적 황해 유입 가능성)

  • Song, Ji-Young;Lee, Joon-Soo;Kim, Jung-Jin;Lee, Ho-Jin;Park, Myung-Hee;Han, In-Seong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.183-194
    • /
    • 2017
  • The catch of Todarodes pacificus in the Yellow Sea is commonly known as the winter cohort. So, to understand the transport process of winter cohort of T. pacificus, and to identify whether the simulated individuals which are transported directly into the Yellow Sea (YS) influence these resources immediately, we conducted a Lagrangian-particle-tracking numerical experiments of T. pacificus from 2005 to 2010 using LTRANS and ROMS. The results show that: (1) Most of the released individuals spread out to the open sea by the Kuroshio and the Tsushima Warm Current around 30 days after release. (2) Unlike the hypothesis proposed by Rosa et al. (2011), Around $30-33N^{\circ}$ near Jeju Island simulated the initial position (3) About 0.01% of individuals released in December were transported solely into the YS around 15 days after release. However there were no surviving individuals due to the low temperature less than $12^{\circ}C$. Also the variation of individuals entered into the YS was not significantly correlated with it in YS catches during the experimental period. Therefore, the most of resources in the YS is assumed to be more influenced by diverse factors of the Pacific Ocean and East Sea than the direct transport in the YS of winter cohort.

Characterization of flow properties of pharmaceutical pellets in draft tube conical spout-fluid beds

  • Foroughi-Dahr, Mohammad;Sotudeh-Gharebagh, Rahmat;Mostoufi, Navid
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.274-281
    • /
    • 2018
  • Experimental studies of the hydrodynamic performance of the draft tube conical spout-fluid bed (DCSF) were conducted using pharmaceutical pellets. The experiments were carried out in a DCSF consisted of two sections: (a) a conical section with the cross section of $120mm{\times}250mm$ and the height of 270 mm, (b) a cylindrical section with the diameter of 250 mm and the height of 600 mm. The flow characteristics of solids were investigated with a high speed camera and a pezoresistive absolute pressure transducer simultaneously. These characteristics revealed different flow regimes in the DCSF: packed bed at low gas velocities, fluidized bed in draft tube at higher gas velocities until minimum spouting, and spouted bed. The stable spouting was identified by the presence of two dominant frequencies of the power spectrum density of pressure fluctuation signature: (i) the frequency band 6-9 Hz and (ii) the frequency band 12-15 Hz. The pressure drops across the draft tube as well as the annulus measured in order to better recognize the flow structure in the DCSF. It was observed that the pressure drop across the draft tube, the pressure drop across the annulus, and the minimum spouting velocity increase with the increase in the height of draft tube and distance of the entrainment zone, but with the decrease in the distributor hole pitch. Finally, this study provided novel insight into the hydrodynamic of DCSF, particularly minimum spouting and stable spouting in the DCSF which contains valuable information for process design and scale-up of spouted bed equipment.

A numerical simulation of propagating turbidity currents using the ULTIMATE scheme (ULTIMATE 기법을 이용한 부유사 밀도류 전파 수치모의)

  • Choi, Seongwook;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • This study presents a numerical model for simulating turbidity currents using the ULTIMATE scheme. For this, the layer-averaged model is used. The model is applied to laboratory experiments, where the flume is composed of sloping and flat parts, and the characteristics of propagating turbidity currents are investigated. Due to the universal limiter of the ULTIMATE scheme, the frontal part of the turbidity currents at a sharp gradient without numerical oscillations is computed. Simulated turbidity currents propagate super-critically to the end of the flume, and internal hydraulic jumps occur at the break-in-slope after being affected by the downstream boundary. It is found that the hydraulic jumps are computed without numerical oscillations if Courant number is less than 1. In addition, factors that affect propagation velocity of turbidity currents is studied. The particle size less than $9{\mu}m$ does not affect propagation velocity but the buoyancy flux affects clearly. Finally, it is found that the numerical model computes the bed elevation change due to turbidity currents properly. Specifically, a discontinuity in the bed elevation, arisen from the hydraulic jumps and resulting difference in sediment entrainment, is observed.