• Title/Summary/Keyword: particle depolarization ratio

Search Result 16, Processing Time 0.028 seconds

Aerosol Optical Properties Retrieval and Separation of Asian Dust using AERONET Sun/Sky Radiometer Measurement at the Asian Dust Source Region (황사 발원지에서 선포토미터를 활용한 에어로졸의 광학적 특성 산출과 미세먼지속 황사구분)

  • Shin, Dongho;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.245-251
    • /
    • 2016
  • We present linear particle depolarization ratio at 440, 675, 870, and 1020 nm retrieved from measurements with an AERONET sun/sky radiometer at the source region of Asian dust, Dunhuang. The linear particle depolarization ratios are retrieved at the two receptor sites (Gosan and Osaka). The highest linear particle depolarization ratio of 0.34 at 1020 nm is retrieved from nearly pure Asian dust. The linear particle depolarization ratio decreased as the volume concentration of fine-mode particle increased. We can confirm that the ratio of Asian dust is changed by the value of the linear particle depolarization ratio retrieved by AERONET data.

Retrieval of Depolarization ratio using Sunphotometer data and Comparison with LIDAR Depolarization ratio (선포토미터 데이터를 이용한 편광소멸도 산출과 라이다 편광소멸도와의 비교)

  • Kim, Kwanchul;Choi, Sungchul;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.97-104
    • /
    • 2016
  • We present linear particle depolarization ratio at 440, 675, 870, and 1020 nm retrieved from measurements with an AERONET sun/sky radiometer at Osaka, Japan. The retrieved data were compared with lidar derived linear particle depolarization ratio at 532 nm at the same site. We find good agreement between linear particle depolarization ratios derived with Sun photometer and measured by lidar except for those at 440 nm. The coefficients of determination between lidar derived data and sun/sky radiometer derived data were 0.28, 0.81, 0.88, and 0.89 at 440, 675, 870, and 1020 nm, respectively. We find that the linear particle depolarization ratio derived with sun/sky radiometer varies by the mixing between Asian dust and pollution particles. As the mixing ratio of Asian dust and pollution particles is increased, the linear particle depolarization ratio values are lower than the values of pure Asian dust. It was confirmed by the value of single-scattering albedo and particle size distribution.

Measurements of the Lidar Ratio for Asian Dust and Pollution Aerosols with a Combined Raman and Back-scatter Lidar (라만-탄성 라이다를 이용한 황사 및 오염 에어러솔의 라이다 비 측정 연구)

  • Yoon, S.C.;Lee, Y.J.;Kim, S.W.;Kim, M.H.;Sugimoto, N.
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.483-494
    • /
    • 2010
  • The vertical profiles of the extinction coefficient, the backscatter coefficient, and the lidar ratio (i.e., extinction-to-backscattering ratio) for Asian dust and pollution aerosols are determined from Raman (inelastic) and elastic backscatter signals. The values of lidar ratios during two polluted days is found between 52 and 82 sr (July 22, 2009) and 40~60 sr (July 31, 2009) at 52 nm, with relatively low value of particle depolarization ratio (<5%) and high value of sun photometer-derived Angstrom exponent (> 1.2). However, lidar ratios between 25 and 40 sr are found during two Asian dust periods (October 20, 2009 and March 15, 2010), with 10~20% of particle depolarization ratio and the relatively low value of sun photometer-derived Angstrom exponent (< 0.39). The lidar ratio, particle depolarization ratio and color ratio are useful optical parameter to distinguish non-spherical coarse dust and spherical fine pollution aerosols. The comparison of aerosol extinction profiles determined from inelastic-backscatter signals by the Raman method and from elastic-backscatter signals by using the Fernald method with constant value of lidar ratio (50 sr) have shown that reliable aerosol extinction coefficients cannot be determined from elastic-backscatter signals alone, because the lidar ratio varies with aerosol types. A combined Raman and elastic backscatter lidar system can provide reliable information about the aerosol extinction profile and the aerosol lidar ratio.

Retrieval of Depolarization ratio using Sunphotometer data and Comparison with LIDAR Depolarization ratio (대기 에어로졸 고도 분포와 선포토미터 편광소멸도와의 연관성 연구)

  • Lee, Kyunghwa;Kim, Kwanchul;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.133-139
    • /
    • 2016
  • Particle depolarization ratios (DPRs) at 440, 675, 870 and 1020 nm are retrieved from AERONET sun/sky radiometer observations at Gosan and Kongju in South Korea. The retrieved results show good agreement with DPRs measured by lidar at 532 nm. High DPRs are found when Asian dust passes through at the upper atmosphere over 2 km above the Earth's surface. In case of lower atmosphere less than 2 km from the ground, DPRs are relatively low due to the small amount of dust particles and mixing of dust with air pollutants.

Size Effect of Light Scattering on the Nano-Sized Color Filter Pigment in Liquid Crystal Display

  • Jhun, Chul Gyu;Gwag, Jin Seog
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.184-187
    • /
    • 2014
  • This study examined the effects of particle size on the light scattering of a nano-sized color filter pigment used to obtain a range of colors in liquid crystal displays. The contrast ratio is one of the most important characteristics of liquid crystal displays. When a color filter is located between two crossed polarizers, the size of the pigment can give rise to a decrease in the contrast ratio due to Rayleigh scattering by the nanoparticles in the filter. The size effect of the color filter pigment on the contrast ratio was investigated in terms of the depolarization parameter. As an experimental result, the depolarization parameter increased with decreasing pigment size. Therefore, a smaller pigment size can reduce light leakage caused by light scattering in the color filter between two crossed polarizers. The depolarization function was also proposed as a useful function for predicting the decrease in the contrast ratio of the color filter.

Classification of Dust/Non-dust Particle from the Asian Dust Plumes and Retrieval of Microphysical Properties using Raman Lidar System (다파장 라만 라이다 시스템을 이용한 황사/비황사입자 구분 및 비황사입자의 미세물리적 특성 연구)

  • Shin, Sungkyun;Shin, Dongho;Lee, Kwonho;Noh, Youngmin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.688-696
    • /
    • 2012
  • The particle depolarization ratios were retrieved from the observation with a multi-wavelength Raman lidar at Gwangju, Korea ($35.11^{\circ}N$, $126.54^{\circ}E$). The measurements were carried out on 24 February and 9 March 2004. Using the particle depolarization ratios, the non-dust aerosol particles were distinguished from the Asian dust plume, and the proportion of the non-dust particle to total dust plume was retrieved. The calculated proportion of the non-dust particle was used for the retrieval of backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm of non-dust particles in the dust plume. Microphysical parameters of non-dust particles including single-scattering albedo at 532 nm were retrieved using retrieved optical values. The retrieved single-scattering albedo of non-dust particles was 0.92~0.95 below 1 km height and 0.82~0.91 above 1 km height on 24 February 2004 and $0.81{\pm}0.03$ on 9 March 2004.

Study on the Variation of Optical Properties of Asian Dust Plumes according to their Transport Routes and Source Regions using Multi-wavelength Raman LIDAR System (다파장 라만 라이다 시스템을 이용한 발원지 및 이동 경로에 따른 황사의 광학적 특성 변화 연구)

  • Shin, Sung-Kyun;Noh, Youngmin;Lee, Kwonho;Shin, Dongho;Kim, KwanChul;Kim, Young J.
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.241-249
    • /
    • 2014
  • The continuous observations for atmospheric aerosol were carried out during 3 years (2009-2011) by using a multi-wavelength Raman lidar at the Gwangju Institute of Science and Technology (GIST), Korea ($35.11^{\circ}N$, $126.54^{\circ}E$). The particle depolarization ratios were retrieved from the observations in order to distinguish the Asian dust layer. The vertical information of Asian dust layers were used as input parameter for the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for analysis of its backward trajectories. The source regions and transport pathways of the Asian dust layer were identified. The most frequent source region of Asian dust in Korea was Gobi desert during observation period in this study. The statistical analysis on the particle depolarization ratio of Asian dust was conducted according to their transport route in order to retrieve the variation of optical properties of Asian dust during long-range transport. The transport routes were classified into the Asian dust which was transported to observation site directly from the source regions, and the Asian dust which was passed over pollution regions of China. The particle depolarization ratios of Asian dust which were transported via industrial regions of China was ranged 0.07-0.1, whereas, the particle depolarization ratio of Asian dust which was transported directly from the source regions to observation site were comparably higher and ranged 0.11-0.15. It is considered that the pure Asian dust particle from source regions were mixed with pollution particles, which is likely to spherical particle, during transportation so that the values of particle depolarization of Asian dust mixed with pollution was decreased.

Depolarization Ratio Retrievals Using AERONET Sun Photometer Data

  • Lee, Kyung-Hwa;Muller, Detlef;Noh, Young-Min;Shin, Sung-Kyun;Shin, Dong-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.178-184
    • /
    • 2010
  • We present linear particle depolarization ratios (LPDRs) retrieved from measurements with an AERONET Sun photometer at the Gwangju Institute of Science and Technology (GIST), Korea ($35.10^{/circ}N$, $126.53^{\circ}E$) between 19 October and 3 November 2009. The Sun photometer data were classified into three categories according to ${\AA}$ngstr$\ddot{o}$ exponent and size distribution: 1) pure Asian dust (19 October 2009), 2) Asian dust mixed with urban pollution observed in the period from 20-26 October 2009, and 3) clean conditions (3 November). We show that the LPDRs can be used to distinguish among Asian dust, mixed aerosol, and non-Asian dust in the atmosphere. The mean LPDR of the pure Asian dust case is 23 %. Mean LPDRs are 13 % for the mixed case. The lowest mean LPDR is 6 % in the clean case. We compare our results to vertically resolved LPDRs (at 532 nm) measured by a Raman LIDAR system at the same site. In most cases, we find good agreement between LPDRs derived with Sun photometer and measured by LIDAR.

3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite (CALIPSO위성 탑재 라이다를 이용한 동북아시아 지역의 대기 에어러솔 3차원 광학특성 분포)

  • Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.559-570
    • /
    • 2014
  • Backscatter signal observed from the space-borne Light Detection And Ranging (LIDAR) system is providing unique 3-dimensional spatial distribution as well as temporal variations for atmospheric aerosols. In this study, the continuous observations for aerosol profiles were analyzed during a years of 2012 by using a Cloud-Aerosol LIDAR with Orthogonal Polarization (CALIOP), carried on the Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The statistical analysis on the particulate extinction coefficient and depolarization ratio for each altitude was conducted according to time and space in order to estimate the variation of optical properties of aerosols over Northeast Asia ($E110^{\circ}-140^{\circ}$, $N20^{\circ}$ $-50^{\circ}$). The most frequent altitudes of aerosols are clearly identified and seasonal mean aerosol profiles vary with season. Since relatively high particle depolarization ratios (>0.5) are found during all seasons, it is considered that the non-spherical aerosols mixed with pollution are mainly exists over study area. This study forms initial regional 3-dimensional aerosol information, which will be extended and improved over time for estimation of aerosol climatology and event cases.

Retrieval of Vertical Single-scattering albedo of Asian dust using Multi-wavelength Raman Lidar System (다파장 라만 라이다 시스템을 이용한 고도별 황사의 단산란 알베도 산출)

  • Noh, Youngmin;Lee, Chulkyu;Kim, Kwanchul;Shin, Sungkyun;Shin, Dongho;Choi, Sungchul
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.415-421
    • /
    • 2013
  • A new approach to retrieve the single-scattering albedo (SSA) of Asian dust plume, mixed with pollution particles, using multi-wavelength Raman lidar system was suggested in this study. Asian dust plume was separated as dust and non-dust particle (i.e. spherical particle) by the particle depolarization ratio at 532 nm. The vertical profiles of optical properties (the particle extinction coefficient at 355 and 532 nm and backscatter coefficient at 355, 532 and 1064 nm) for non-dust particle were used as input parameter for the inversion algorithm. The inversion algorithm provides the vertical distribution of microphysical properties of non-dust particle only so that the estimation of the SSA for the Asian dust in mixing state was suggested in this study. In order to estimate the SSA for the mixed Asian dust, we combined the SSA of non-dust particles retrieved by the inversion algorithms with assumed the SSA of 0.96 at 532 nm for dust. The retrieved SSA of Asian dust plume by lidar data was compared with the Aerosol Robotics Network (AERONET) retrieved values and showed good agreement.