• Title/Summary/Keyword: particle crushing

Search Result 108, Processing Time 0.031 seconds

Numerical investigation into particle crushing effects on the shear behavior of gravel

  • Xi Li;Yayan Liu;Guoping Qian;Xueqing Liu;Hao Wang;Guoqing Yin
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.209-219
    • /
    • 2023
  • This paper presents numerical investigations into the particle crushing effect on the shear properties of gravel under direct shear condition. A novel particle crushing model was developed based on the octahedral shear stress criterion and fragment replacement method. A series of direct shear tests were carried out on unbreakable particles and breakable particles with different strengths. The evolutions of the particle crushing, shear strength, volumetric strain behavior, and contact force fabric during shearing were analyzed. It was observed that the number of crushed particles increased with the increase of the shear displacement and axial pressure and decreased with the particle strength increasing. Moreover, the shear strength and volume dilatancy were obviously decreased with particle crushing. The shear displacement of particles starting to crush was close to that corresponding to the peak shear stress got. Besides, the shear-hardening behavior was obviously affected by the number of crushed particles. A microanalysis showed that due to particle crushing, the contact forces and anisotropy decreased. The mechanism of the particle crushing effect on the shear strength was further clarified in terms of the particle friction and interlock.

Evolution of Particle Crushing and Shear Behavior with Respect to Particle Shape Using PFC (PFC를 이용한 입자 형상에 따른 입자 파쇄 및 전단거동 전개)

  • Jo, Seon-Ah;Cho, Gye-Chun;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.41-53
    • /
    • 2009
  • In order to analyze the influence of particle shape on evolution of particle crushing and characteristic of shear behavior of granular soil, direct shear test was simulated by using DEM (Discrete Element Method). Six particle shapes were generated by clump and cluster model built in PFC (Particle Flow Code). The results of direct shear test for six particle shapes were compared and analyzed with those for circular particle shape. The results of numerical tests showed a good agreement with those of experimental tests, thus the appropriateness of numerical modelling set in this study was proved. As for particle shape, more angular and rougher particle induced larger internal friction angle and more particle crushing than relatively round and smooth particle. When particles were crushed, crushing was concentrated on the shear band adjacent to the shear plane. Finally, it can be concluded that the numerical models suggested in this study can be used extensively for other studies concerning the shear behavior of granular soil including soil crushing.

Characteristics of Shear Behavior According to State of Particle Bonding and Crushing (입자 결합 및 파쇄 형태에 따른 전단거동 특성)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Seok-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.1-12
    • /
    • 2011
  • In order to analyze the influence of particle bonding and crushing on the characteristics of shear behavior, especially residual shear behavior of granular soil, ring shear test was simulated by using DEM(Discrete Element Method)-based software program PFC(Particle Flow Code). Total four models including two non-crushing models and two crushing models were created in this study by using clump or cluster model built in PFC. The applicability of Lobo-crushing model proposed by Lobo-Guerrero and Vallejo(2005) was investigated. In addition, the results of ring shear test were analyzed and compared with those of direct shear test. The results showed that the modelling of ring shear test should be conducted to investigate the residual shear behavior. The Lobo-crushing model cannot be applied to investigate the residual shear strength. Finally, it can be concluded that the numerical models excluding Lobo-crushing model suggested in this study can be used extensively for other studies concerning the residual shear behavior of granular soil including soil crushing.

Undrained cyclic shear characteristics and crushing behaviour of silica sand

  • Wu, Yang;Hyodo, Masayuki;Aramaki, Noritaka
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This paper presents an investigation of the liquefaction characteristics and particle crushing of isotropically consolidated silica sand specimens at a wide range of confining pressures varying from 0.1 MPa to 5 MPa during undrained cyclic shearing. Different failure patterns of silica sand specimens subjected to undrained cyclic loading were seen at low and high pressures. The sudden change points with regard to the increasing double amplitude of axial strain with cycle number were identified, regardless of confining pressure. A higher cyclic stress ratio caused the specimen to liquefy at a relatively smaller cycle number, conversely producing a larger relative breakage $B_r$. The rise in confining pressure also resulted in the increasing relative breakage. At a specific cyclic stress ratio, the relative breakage and plastic work increased with the rise in the cyclic loading. Less particle crushing and plastic work consumption was observed for tests terminated after one cyclic loading. Majority of the particle crushing was produced and majority of the plastic work was consumed after the specimen passed through the phase transformation point and until reaching the failure state. The large amount of particle crushing resulted from the high-level strain induced by particle transformation and rotation.

Applicability of Particle Crushing Model by Using PFC (PFC를 이용한 입자 파쇄 모델의 적용성 연구)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Seok-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • Granular soils having a large particle size have been used as a filling material in the construction of foundation, harbor, dam, and so on. Consequently, the shear behavior of this granular soil plays a key role in respect of stability of structures. For example, soil particle crushing occurring at the interface between structure and soil and/or within soil mass can cause a disturbance of ground characteristics and consequently induce issues in respect of stability of structures. In order to investigate the shear behavior according to an existence and nonexistence of particle crushing, numerical analyses were conducted by using the DEM (Discrete Element Method)-based software program PFC2D (Particle Flow Code). By dividing soil particle bonding model into crushing model and noncrushing model, total four particle bonding models were simulated and their results were compared. Noncrushing model included one ball model and clump model, and crushing model included cluster model and Lobo-crushing model. The combinations of soil particle followed the research results of Lobo-Guerrero and Vallejo (2005) which were composed of eight circles. The results showed that the friction angle was in order of clump model > cluster model > one ball model. The particle bonding model compared to one ball model and noncrushing model compared to crushing model showed higher shear strength. It was also concluded that the model suggested by Lobo-Guerrero and Vallejo (2005) is not appropriate to simulate the soil particle crushing.

  • PDF

Particle-Size Distribution Dependent upon Crushing Mechanism and Crushing Circuit (파쇄 메카니즘과 파쇄회로에 따른 입도분포)

  • Choi, Do-Young;Kim, Wan-Tae;Kim, Sang-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.297-303
    • /
    • 2010
  • We report the particle-size distribution and comminution charactersitics of dolomite depending upon crushing equipment (hammer crusher and roll crusher) and crushing circuit (open and closed). The quantity of fine particles (< 100 mesh) produced by hammer crusher was 34 wt.% which is about three times that by roll crusher. The quantity of 14~25 mesh size fraction by roll crusher was 20 wt.% higher than that produced by hammer crusher. 80 wt.% of the crushing products by hammer crushing was under 35 mesh in size, while the particles produced by roll crushing were relatively coarse. The particle size of both the hammer and roll crushers decreased by employing closed crusing circuit in comparison to open circuit. Products of required particle-size were obtained effectively depending on appropriate crushing equipment and crushing circuit.

Study on Shear Behavior Characteristics of Granular Material using DEM (DEM을 이용한 조립재료의 전단거동 특성에 관한 연구)

  • Jo, Seon-Ah;Jeong, Sun-Ah;Lee, Seok-Won;Cho, Gye-Chun;Chun, Youn-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.136-145
    • /
    • 2009
  • Factors influencing shear behavior of granular material include particle size, shape, distribution, relative density, particle crushing, etc. In this study, these factors are characterized by viewpoint of shear behavior using numerical analysis based on DEM. Geometrical particle shape is represented by a combination of small circular particles and influence of particle shape on crushing is studied through relative comparisons between clump (uncrushable) and cluster (crushable) models which are modeled using DEM. Also, particle shape is quantified by the dimensionless parameters such as circularity and convexity. The results indicate that particle shape indexes have a negative association with internal friction angle. Also, internal friction angle becomes reduced and failure envelop curve becomes nonlinear due to the particle crushing. It is also found that numerical results are quite good agreement with the experimental test conducted in this study.

  • PDF

Characteristics of the Stress Path of a Sabkha Layer Consisting of Carbonate Sand, as Obtained by the Triaxial Test after Particle Crushing (Sabkha층 탄산질 모래의 삼축압축시 입자파쇄로 인한 응력경로 특성)

  • Kim, Seok-Ju;Yi, Chang-Tok;Jang, Jae-Ho;Han, Heui-Soo
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.23-38
    • /
    • 2014
  • The composition of carbonate sands from a sabkha at Ruwais in the UAE differs from that of silica sand, and these sands are crushed easily under low compression pressures. Accordingly, particle crushing of carbonate sand occurs under high pressure, which results in additional settlement and reduces the shear strength. In this study, consolidation and triaxial tests were conducted to analyze the characteristics of carbonate sands following particle crushing. The unusual shear strength graphs of the carbonate sands result from the degree of particle pre-crushing. For the range at p' > p in the p (p')-q diagram, negative (-) excess porewater pressures occur if the axial pressure causes particle crushing that induces exposure of the inner voids. In addition, the q value decreased after particle crushing. In conclusion, the unusual characteristics of the carbonate sands were induced by particle crushing. The triaxial tests revealed that the degree of particle pre-crushing influenced the excess porewater pressure.

Behavior Analysis of Particle Crushing about Sabkha Layer under Hydrotest (Sabkha층의 Hydrotest 시 입자파쇄 거동분석)

  • Kim, Seokju;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.57-65
    • /
    • 2013
  • Carbonate sands can be crushed under low confining pressure to achieve high compressibility. So particle crushing has significant influence on characteristics of strength and deformation. Trial embankment and hydrotest are conducted on Sabkha layer, consisting of carbonate sand to build tank structure. In this paper the settlement behavior was analyzed from each test. Particle crushing happened from 80 to 170kPa stress under compression test, and calcium was detected from chemical test. The test result came out Sabkha soil was very weak and easy to be crushing. About trial embankment test, particle crushing was not happen, and then extinction of pore water pressure and settlements were finished just during 2 days. On the other hand, the long-term settlement was happened in hydrotest. So the two test results did not correspond to each other. If loading stress is higher than yielding stress, instant settlement and secondary compression settlement are happened as a result of the particle crushing.

Effect of Particle Crushing on the Results on DMT in Sand (입자 파쇄가 사질토의 DMT 결과에 미치는 영향)

  • Lee, Moon-Joo;Choi, Young-Min;Kim, Min-Tae;Bae, Kyung-Doo;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.740-746
    • /
    • 2010
  • Most important characteristics of calcareous sand are the particle angularity and hollow structure. These characteristics lead to the different behavior of calcareous sand compared to siliceous sand. This study performs a series of dilatometer test using calibration chamber, in order to analyze the effect of particle characteristic of calcareous sand on DMT indices. From experimental test, it is observed that the horizontal stress index($K_D$) and dilatometer modulus($E_D$) of calcareous Jeju sand is underestimated compared to siliceous sand. This is because the particle crushing during penetration induces the less contraction of the dilatometer membrane. A slightly smaller influence of particle crushing is reflected in $E_D$ rather than $K_D$, because $P_1$ pressure reflects the deformation characteristics of un-crushed particle relatively well. It is also observed that $K_D$ of Jeju sand is differently influenced by the vertical effective stress compared with that of siliceous sand.

  • PDF