• Title/Summary/Keyword: particle concentration

Search Result 2,262, Processing Time 0.035 seconds

Turbidimetric Measurement for On-line Monitoring of SiO2 Particles

  • Kim, In-Sook;Kim, Yang-Sun;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.801-805
    • /
    • 2004
  • In this work, the fundamental study of on-line monitoring of $SiO_2$ particles in the size range of 40 nm to 725 nm was carried out using turbidimetry. The size of particle was measured using a field emission scanning electron microscope (FE-SEM). The factors affecting on the turbidity were discussed, for example, wavelength, size, and concentration. In order to observe the dependence of turbidity on the wavelength, a turbidimetric system equipped with charged coupled detector (CCD) was built. The shape of the transmitted peak was changed and the peak maximum was shifted to the red when the concentration of particle was increased. This result indicates that the turbidity is related to the wavelength, which corresponds to the characteristic of the Mie extinction coefficient, Q, that is a function of not only particle diameter and refractive index but also wavelength. It is clear that a linear calibration curve for each particle in different size can be obtained at an optimized wavelength.

Particle Size-Related Dust and Quartz Concentration of Stone Grinding Operations (석재가공 공정에서 발생되는 분진과 석영의 입자크기별 농도 특성)

  • Kim, Seong-Hwan;Bae, Hye Jeong;Jung, Jong-Hyon;Phee, Young Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.462-470
    • /
    • 2014
  • Objectives: The purpose of this study was to evaluate quartz concentrations in airborne respirable dust and particle size-related quartz concentrations. Methods: Respirable dust samples were collected using a 10 mm Dorr-Oliver nylon cyclone equipped with a 37 mm, $5{\mu}m$ pore size PVC filter. Dust samples were collected with a Marple's personal cascade impactor from stone grinding operations in five stone-related business located in the Gyeongsangbuk-do area. Results: The geometric mean of quartz concentration in the respirable dust was $0.170mg/m^3$, and the rate of exceeding the Korean Occupational Exposure Limit(KOEL) was 93.3%. The quartz concentration by particle size shows that it was the highest($0.115mg/m^3$) in stage 5($3.50-6.00{\mu}m$), which corresponds with the size of respirable particle. The smaller the particle sizes were, the higher quartz the content became. The mass fractions of inhalable, thoracic, and respirable dust were 72.1%, 36.0%, and 14.4%. Conclusions: The rate of the quartz concentration in respirable dust from stone grinding operations exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values was 100%, which means proper work environmental management is required through regular working environmental measurements. Given that the stone grinding operations had a higher small size dust concentrations, there is a need to reduce respirable dust, such as through wet operation and local exhaust ventilation.

Effects of Two-dimensional Heat and Mass Transports on Condensational Growth of Soot Particles in a Tubular Coater (원형관 코팅장치에서 연소 입자의 응축성장에 미치는 2차원 열 및 물질전달의 영향)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.163-171
    • /
    • 2013
  • Soot particles emitted from combustion processes are often coated by non-absorbing organic materials, which enhance the global warming effect of soot particles. It is of importance to study the condensation characteristics of soot particles experimentally and theoretically to reduce the uncertainty of the climate impact of soot particles. In this study, the condensational growth of soot particles in a tubular coater was modeled by a one-dimensional (1D) plug flow model and a two-dimensional (2D) laminar flow model. The effects of 2D heat and mass transports on the predicted particle growth were investigated. The temperature and coating material vapor concentration distributions in radial direction, which the 1D model could not accounted for, affected substantially the particle growth in the coater. Under the simulated conditions, the differences between the temperatures and vapor concentrations near the wall and at the tube center were large. The neglect of these variations by the 1D model resulted in a large error in modeling the mass transfer and aerosol dynamics occurring in the coater. The 1D model predicted the average temperature and vapor concentration quite accurately but overestimated the average diameter of the growing particles considerably. At the outermost grid, at which condensation begins earliest due to the lowest temperature and saturation vapor concentration, condensing vapor was exhausted rapidly because of the competition between condensations on the wall and on the particle surface, decreasing the growth rate. At the center of the tube, on the other hand, the growth rate was low due to high temperature and saturation vapor concentration. The effects of Brownian diffusion and thermophoresis were not high enough to transport the coating material vapor quickly from the tube center to the wall. The 1D model based on perfect radial mixing could not take into account this phenomenon, resulting in a much higher growth rate than what the 2D model predicted. The result of this study indicates that contrary to a previous report for a thermodenuder, 2D heat and mass transports must be taken into account to model accurately the condensational particle growth in a coater.

Characteristics of spatial distribution of ultrafine particle number concentration on the roads of Nowon-gu, Seoul (서울시 노원구 도로상 극미세입자 오염도 공간분포 특징)

  • Lee, Seung-Bok;Lee, Dong-Hun;Lee, Seung Jae;Jin, Hyoun-Cher;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.7 no.1
    • /
    • pp.21-30
    • /
    • 2011
  • The spatial distributions of air pollutants, in particular, ultrafine particles near traffic congestion roads at urban areas need to reduce human exposure levels for protecting public health. In this study, the number concentrations of ultrafine particles larger than 5 nm were measured every second during driving on the major roads of Nowon-gu, Seoul for 1.6 h using a mobile emission laboratory on October 5, 2010. The ultrafine particle number concentrations ranged from 7,009 to $265,600particles/cm^3$ with an average of $55,570particles/cm^3$, and these levels were comparable to concentrations of ultrafine particles larger than 3 or 7 nm on the arterial roads at urban areas in Los Angeles, USA and Zurich, Switzerland. It was frequently observed that the ultrafine particle number increased rapidly when vehicle speed was accelerated and it decreased sharply when vehicle speed was decelerated. The high peak events of ultrafine particle concentration larger than $200,000particles/cm^3$ were observed seven times during the measurement period. From the three repeated measurements during the short period of 50 min, it was concluded that the ultrafine particle number concentration on the road was significantly time-dependent. This on-road measurement approach can be utilized to manage vehicle-related air pollution in urban.

Estimation of Particle Mass Concentration from Lidar Measurement (라이다 관측자료를 이용한 미세먼지 농도 산정)

  • Kim, Man-Hae;Yeo, Huidong;Sugimoto, Nobuo;Lim, Han-Cheol;Lee, Chul-Kyu;Heo, Bok-Haeng;Yu, Yung-Suk;Sohn, Byung-Ju;Yoon, Soon-Chang;Kim, Sang-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.169-177
    • /
    • 2015
  • Vertical distribution of particle mass concentrations was estimated from 8-year elastic-backscatter lidar and sky radiometer data, and from ground-level PM10 concentrations measured in Seoul. Lidar ratio and mass extinction efficiency were determined from aerosol optical depth (AOD) and ground-level PM10 concentrations, which were used as constraints to estimate particle mass concentration. The mean lidar ratio (with standard deviation) and mass extinction efficiency for the entire 8-year study period were $60.44{\pm}23.17$ sr and $3.69{\pm}3.00m^2g^{-1}$, respectively. The lidar ratio did not vary significantly with the ${\AA}ngstr{\ddot{o}}m$ exponent (less than ${\pm}10%$); however, the mass extinction efficiency decreases to $1.82{\pm}1.67m^2g^{-1}$ (51% less than the mean value) when the ${\AA}ngstr{\ddot{o}}m$ exponent is less than 0.5. This result implies that the particle mass concentration from lidar measurements can be underestimated for dust events. Seasonal variation of the particle mass concentration estimated from lidar measurements for the boundary layer, was quite different from ground-level PM10 measurements. This can be attributable to an inhomogeneous vertical distribution of aerosol in the boundary layer.

Effects of Neutral Detergent Fiber Concentration and Particle Size of the Diet on Chewing Activities of Dairy Cows

  • Moon, Y.H.;Lee, S.C.;Lee, Sung S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1535-1540
    • /
    • 2004
  • Six dry Holstein cows were used to evaluate the effect of dietary neutral detergent fiber (NDF) concentration and particle size (PS) on chewing activity. Treatments were arranged in a 3$\times$3 factorial design; total mixed rations contained three NDF concentrations (26, 32, 38%) and three PS (1.0, 1.5, 2.0 cm). NDF levels and particle sizes of diets were adjusted by formulating rate and cutting length of alfalfa hay and rice straw. Cows were fed twice daily at 90% of ad libitum feed intake throughout the experiment. Chewing activity was positively associated with NDF concentration, but not significantly affected by PS of diet. Eating time per unit of NDF intake was affected by PS rather than NDF concentration of diet. Time spent ruminating per unit DM or NDF intake increased with increasing NDF concentration of diet, but was not affected by PS. As the PS of diet increased, the eating time per day increased, but the rumination time decreased. In addition, as the number of rumination bolues decreased the rumination duration increased as well as the chews per bolus. The regression equation induced from relationships of NDF concentrations (NDF, %) and particle sizes (PS, cm) of diet on roughage value index (RVI, min of chewing time/kg DMI) was as follows. RVI=-19.672+1.44$\times$NDF+5.196$\times$PS, ($R^{2}$=0.81).

Experimental Study and Modelling on Membrane Fouling in Taylor Vortex Flow Microfiltration (테일러 와류 정밀여과에서 막오염의 실험적 연구 및 모델링)

  • 박진용;김현우;최창균
    • Membrane Journal
    • /
    • v.13 no.2
    • /
    • pp.88-100
    • /
    • 2003
  • A change of filtrate flux in Taylor vortex flow filtration was investigated experimentally by rotating speed of inner cellulose ester membrane cylinder (average pore size: 1.2 ${\mu}m$), slurry concentration, and particle size. The filtrate flux was a direct proportion relation with TMP, but an inverse relation with resistances. A change of cake resistance with time was examined by rotating speed, slurry concentration, and particle size. Initial resistance increased dramatically as raising slurry concentration, and the pseudo-steady state was maintained at high resistance value. However, times to reach the pseudo-steady state did not depend on slurry concentration. The resistance was larger as smaller particle size, because possibility of pore blocking inside membrane could be higher and shear effect should be lower as smaller particle size. A model equation suggested in this study was composed of particle deposition and removal terms, and could confirm well experimental data using average values of experimental coefficients.

Material Removal Rate Modeling of SiO2/TiO2 Mixed-Abrasive Slurry CMP for SiC (SiO2/TiO2 혼합입자 슬러리 SiC CMP의 재료제거율 모델링)

  • Hyunseop Lee
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.72-75
    • /
    • 2023
  • Silicon carbide (SiC) is used as a substrate material for power semiconductors; however, SiC chemical mechanical polishing (CMP) requires considerable time owing to its chemical stability and high hardness. Therefore, researchers are attempting to increase the material removal rate (MRR) of SiC CMP using various methods. Mixed-abrasive CMP (MAS CMP) is one method of increasing the material removal efficiency of CMP by mixing two or more particles. The aim of this research is to study the mathematical modeling of the MRR of MAS CMP of SiC with SiO2 and TiO2 particles. With a total particle concentration of 32 wt, using 80-nm SiO2 particles and 25-nm TiO2 particles maximizes the MRR at 8 wt of the TiO2 particle concentration. In the case of 5 nm TiO2 particles, the MRR tends to increase with an increase in TiO2 concentration. In the case of particle size 10-25 nm TiO2, as the particle concentration increases, the MRR increases to a certain level and then decreases again. TiO2 particles of 25 nm or more continuously decreased MRR as the particle concentration increased. In the model proposed in this study, the MRR of MAS CMP of SiC increases linearly with changes in pressure and relative speed, which shows the same result as the Preston's equation. These results can contribute to the future design of MAS; however, the model needs to be verified and improved in future experiments.

Dispersion Polymerization of Acrylamide in t-Butyl Alcohol/Water Media

  • Lee, Ki-Chang;Lee, Seung-Eun;Park, Yoo-Jin;Song, Bong-Keun
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.213-218
    • /
    • 2004
  • We have performed dispersion polymerization of acrylamide in tert-butyl alcohol/water mixture-using hydroxypropyl cellulose and ammonium persulfate as the stabilizer and the initiator, respectively - to study the effects that the concentration of monomer, initiator, and stabilizer, the tert-butyl alcohol/water ratios as polymerization media, and the reaction temperature have on, among other things, the polymerization kinetics, particle sizes, and molecular weights. The polymerization rate increased upon increasing the concentration of the monomer, initiator, and stabilizer, the water content in the tert-butyl alcohol/water media, and the polymerization temperature. The average particle size of the lattices increased upon increasing the concentration of initiator, the polymerization temperature, and the water content in the tert-butyl alcohol/water media, but it decreased upon increasing the concentration of monomer and stabilizer. The viscosity-average molecular weight increased upon increasing the concentration of monomer and stabilizer and the water content in the tert-butyl alcohol/water media, but it decreased upon increasing both the concentration of initiator and the polymerization temperature.

Characteristics of Urban Aerosol Number Size Distribution in Seoul during the Winter Season of 2001 (2001년 겨울철 서울 대기 에어로졸의 입경별 수 농도 특성)

  • 배귀남;김민철;임득용;문길주;백남준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.167-177
    • /
    • 2003
  • The number size distribution of urban aerosols ranging from 0.02 to 20 ${\mu}{\textrm}{m}$ in diameter was measured by using a scanning mobility particle sizer (SMPS) system and an aerodynamic particle sizer spectrometer (APS) at Seoul from November 30,2001 to January 14, 2002. The gaseous species such as CO, NO, NO$_2$, and $O_3$ were also continuously monitored. The daily average concentration of urban aerosols sorted into three groups (0.02~0.1 ${\mu}{\textrm}{m}$, 0.1~1 ${\mu}{\textrm}{m}$ and 1~10 ${\mu}{\textrm}{m}$) and the typical number, surface, and volume distributions of urban aerosols were discussed in this paper. The weekly variation of aerosol concentration was compared with those of gaseous concentrations. relative humidity, and visibility. The results showed that the particle number concentration seemed to increase in the morning and the number concentration of fine particles less than 1 fm in diameter seemed to increase when the concentrations of CO, NO, and NO$_2$ were high. The number concentration of fine particles was relatively high when the relative humidity was greater than 70% during the increasing period of relative humidity. The visibility was weakly correlated with the concentration of aerosols ranging 0.1 to 1 ${\mu}{\textrm}{m}$, and the number size distribution for high visibility episode was apparently different from that for low visibility episode.