• Title/Summary/Keyword: partially premixed turbulent combustion

Search Result 28, Processing Time 0.025 seconds

Investigation of the Prediction Performance of Turbulence and Combustion Models for the Turbulent Partially-premixed Jet Flame (난류 부분예혼합 제트화염에 대한 난류 및 연소모델의 예측성능 검토)

  • Kim, Yu Jeong;Oh, Chang Bo
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.35-43
    • /
    • 2014
  • The prediction performance of 9 model sets, which combine 3 turbulent models and 3 combustion models, was investigated numerically for turbulent partially-premixed jet flame. The standard ${\kappa}-{\varepsilon}$ (SKE), Realizable ${\kappa}-{\varepsilon}$ (RKE) and Reynolds stress model (RSM) were used as a turbulence model, and the eddy dissipation concept (EDC), steady laminar flamelet (SLF) and unsteady laminar flamelet model (ULF) were also adopted as a combustion model. The prediction performance of those 9 model sets was evaluated quantitatively and qualitatively for Sandia D flame of which flame structure was measured precisely. The flame length was predicted as, from longest to shortest, RSM > SKE > RKE, and the RKE predicted the flame length of the jet flame much shorter than experiment. The flame temperature was over predicted by the combination of RSM + SLF or RSM + ULF while the flame length obtained by RSM + SLF and RSM + ULF was well agreed with the experiment. The combination of SKE + SLF and SKE + ULF predicts well the flame length as well as the temperature distribution. The SKE turbulence model was most superior to the other turbulent models, and SKE + ULF showed the best prediction performance for the structure of turbulent partially-premixed jet flame.

Modeling of Turbulent Molecular Mixing by the PDF Balance Method for Turbulent Reactive Flows (난류연소 유동장에서의 확률밀도함수 전달방정식을 이용한 난류혼합 모델링)

  • Moon, Hee-Jang
    • Journal of the Korean Society of Combustion
    • /
    • v.2 no.1
    • /
    • pp.39-51
    • /
    • 1997
  • A review of probability density function(PDF) methodology and direct numerical simulation for the purpose of modeling turbulent combustion are presented in this study where particular attention is focused on the modeling problem of turbulent molecular mixing term appearing in PDF transport equation. Existing mixing models results were compared to those evaluated by direct numerical simulation in a turbulent premixed medium with finite rate chemistry in which the initial scalar field is composed of pockets of partially burnt gases to simulate autoignition. Two traditional mixing models, the least mean square estimations(LMSE) and Curl#s model are examined to see their prediction capability as well as their modeling approach. Test calculations report that the stochastically based Curl#s approach, though qualitatively demonstrates some unphysical behaviors, predicts scalar evolutions which are found to be in good agreement with statistical data of direct numerical simulation.

  • PDF

NUMERICAL MODELING FOR FLAME STABILIZATION OF GAS TURBINE COMBUSTOR (가스터빈 엔진의 화염안정성에 대한 수치모델링)

  • Kang Sungmo;Kim Yongmo;Chung Jae-Hwa;Ahn Dal-Hong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.201-206
    • /
    • 2005
  • In order to realistically represent the complex turbulence-chemistry interaction at the partially premixed turbulent lifted flames encountered in the gas turbine combustors, the combined conserved-scalar/level-set flamelet approach has been adopted. The parallel unstructured-grid finite-volume method has been developed to maintain the geometric flexibility and computational efficiency for the solution of the physically and geometrically complex flows. Special emphasis is given to the swirl effects on the combustion characteristics of the lean-premixed gas turbine combustor. Numerical results suggest that the present approach is capable of realistically simulating the combustion characteristics for the lean-premixed gas turbine engines and the lifted turbulent jet flame with a vitiated coflow.

  • PDF

On the Characteristics of Extinction and Re-ignition in a Crossed Twin Jet Counterflow (Crossed Twin Jet Counterflow에서의 소염과 재점화 특성)

  • Lee, B.K.;Yang, S.Y.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.25-31
    • /
    • 2002
  • For the better understanding of the stability of turbulent combustion, more researches on extinction and re-ignition are needed. Flame interactions in non-premixed flame have also not been greatly researched. We made a hybrid twin jet flame, the combinations of diffusion flame and partially-premixed diffusion flame, in a twin jet counterflow configuration. The extinction limits of a crossed twin jet counterflow have been extended in comparison with those of a one-dimensional counterflow because of flame interactions through heat transfer and joint ownership of various radicals. Besides, we have obtain ignition $Damk\"{o}hler$ number by experimental method without external ignition source using the extinction characteristic in a crossed twin jet counterflow flame. From results, we can identify the hysteresis between extinction and ignition $Damk\"{o}hler$ number in S-curve.

  • PDF

Interaction Between Partially Premixed and Premixed Swirl Flames in a Hybrid/Dual Swirl Jet Combustor (하이브리드/이중 선회제트 연소기에서 부분예혼합-예혼합 선회화염의 상호작용)

  • Jo, Joonik;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.7-8
    • /
    • 2012
  • The effects of interaction between partially premixed and premixed swirl flames on CO and NOx emissions were experimentally investigated using a hybrid/dual swirl jet combustor for a micro-gas turbine. Under the condition of constant angle ($45^{\circ}$) for outer swirl vane, the angle and direction of inner swirl vane installed for a partially premixed flame were varied as main parameters with a constant fuel flow rate for each nozzle. It was found that for all conditions, CO and NOx emissions were measured below 4 ppm and 15 ppm at 15% $O_2$, respectively, in a wide range of equivalence ratio (0.6~0.9). For co-swirl flows, CO emission increased dramatically as the angle of inner swirl vane increased from $15^{\circ}$ to $45^{\circ}$ near lean-flammability limit (i.e. equivalence ratio of 0.5). On the other hand, the case of swirl $angle=45^{\circ}$ provided the lowest NOx emission at higher equivalence ratios than 0.6. For counter-swirl flows, the case of swirl $angle=45^{\circ}$ extended the lean-flammability limit but higher NOx emissions were found compared to those of co-swirl flows. These results could be inferred by interaction between (inner) partially premixed and (outer) premixed swirl flames. However, these estimations were not clear yet because there was insufficient data on turbulent flow structure and fuel-air mixing in the present experimental approach.

  • PDF

Numerical Analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment (고압 분위기하에 분사된 메탄가스 제트의 자연발화 및 화염전파 특성 해석)

  • Kim, Seong-Ku;Yu, Yong-Wook;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.24-32
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (Representative Interactive Flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian Particle Flamelet Model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

  • PDF

An Experimental Study on Scaling of Nitrogen Oxide emissions of H2/CO Non-premixed Turbulent Jet Flame with Coaxial Air (동축공기가 있는 H2/CO 비예혼합 난류 제트화염의 질소산화물 배출 상사식에 대한 실험적 연구)

  • Sohn, Kitae;Hwang, Jeongjae;Bouvet, Nicolas;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.259-261
    • /
    • 2012
  • The effect of fuel composition and coaxial air on the nitrogen oxide emission index was studied in a non-premixed turbulent jet flame. Validity of experimental setup and methodology is checked. The NOx emission trend is similar with previous works in hydrogen flame, but it's not well in $H_2/CO$ flame. Normalized EINOx scaling with modified $S_G$ applying near-field concept was conducted. Experimental data don't collapse single correlation curve, but partially same trend is observed in all cases.

  • PDF

Numerical analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment (고압 분위기하에 분사된 메탄가스 제트의 자연점화 및 화염전파 특성 해석)

  • 김성구;유용욱;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.81-89
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (representative interactive flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian particle flamelet model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

Flamelet Modeling of Thrbulent Nonpremixed Flames (층류화염편 모델을 이용한 난류 비예혼합 화염장 해석)

  • Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2000
  • The flamelet concept has been widely applied to numerically simulate complex phenomena occurred in nonpremixed turbulent flames last two decades, and recently broadened successfully the applicable capabilities to various combustion problems from simple laboratory flames to gas turbine engine, diesel spray combustion and partially premixed flames. The paper is focused on brief review of recently noticeable work related to flamelet modeling, which includes Lagrangian flamelet approach, RIF concept as well as steady flamelet approach. The limitation of steady flamelet assumption, the effect of transient behavior of flamelets, and the effect of spray vaporization on PDF model have been discussed.

  • PDF

Experimental Investigation on Premixed Combustion Characteristics with Suction & Blow Fans (Suction과 blow fan을 이용한 연소기내의 부분 예혼합화염 연소 특성에 관한 실험적 연구)

  • Kang, Ki-Bal;Kim, Dong-Il;Oh, Sang-Heun
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.15-23
    • /
    • 2002
  • We measured emission indices for $NO_x$, CO, temperature and radical characteristics for partially premixied flames formed by suction & blow fans air condition. At sufficiently high levels of partial premixing a double flame structure consisting of a rich premixed inner flame and outer diffusion flame was established similar to that previously observed in premixed flames. $NO_x$, Temperature. CO concentration were experimented with approximately constant air flow rate and decreasing equivalence ratios. The reduction in $NO_x$, and temperature at suction condition as compared with that for blow condition was approximately 20%, but on the contrary, CO emission was increased. In addition, We measured temperature distributions and found that temperature increased continuously with increasing partial premixing. We also estimated CH, $C_2$ radical intensity. CH and $C_2$ radicals provide evidence that, for the present measurement, CH and $C_2$ radicals intensity was associsated with their premixed component. And we observed stronger $C_2$, CH radicals intensity at suction conditions than blow conditions.

  • PDF