• Title/Summary/Keyword: partial pressure

Search Result 1,423, Processing Time 0.026 seconds

Optimization of process variables in batch-type MOD process (일괄처리방식을 이용한 MOD 공정의 변수 최적화)

  • Chung, Kook-Chae;Yoo, Jai-Moo;Ko, Jae-Woong;Kim, Young-Kuk;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.23-25
    • /
    • 2006
  • Optimization of process variables, including oxygen and water partial pressure and also an nesting temperature, was performed in batch-type process to fabricate YBCO films on LaAlO3 single crystal. In this work, YBCO oxide powder was used as a starting precursor for metal-organic deposition(MOD)method. The precursor films were fabricated in batch furnace and they were converted to the epitaxial YBCO films at the same furnace with varying the process variables. The oxygen partial pressure was varied from 100ppm to 2000ppm and the water partial pressure from 1.2% to 12.2%. The window for optimal P(O2) was narrow about 700ppm for batch-type process. YBCO films in bathc-thype MOD process were optimized at 740-770oC and P(H2O) of 2.3%-7.3%.

Some Crystalline Properties and Growth Condition of BP(100)Epitaxially Grown on Si(100) Substrates (Si(100) 기판위에 에피텍시된 BP(100)의 성장조건 및 결정성)

  • Kim, Chul Ju;Koh, Youn Kyu;Ahn, Chul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.754-757
    • /
    • 1986
  • Boron monophosphide(100) was eitaxially grown on Si(100) substrate by thermal reaction of B2H6 and PH3 in hydrogen ambient. In an LPCVD system, the growth condition was studied as a function of gas mixture composition and temperature. For the growth temperature of 950\ulcorner in the constant flow rate (partial pressure) of B2H6, n-BP with c(2x2) surface structure was obtained in the PH3 partial pressure of 300-500 cc/min. On the other hand, for the growth temperature of 1080\ulcorner, p-BP with surface structure was observed for the PH3 partial pressure of 400-500cc/min.

  • PDF

Corrosion Behavior of Dental Alloys Cast by Various Casting Methods (치과용 주조합금의 주조방법에 따른 부식거동)

  • Choe Han-Cheol;Ko Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.296-300
    • /
    • 2004
  • The defects of partial denture frameworks are mainly shrinkage porosity, inclusions, micro-crack, particles from investment, and dendritic structure. In order to investigate a good casting condition of partial denture frameworks, the three casting alloys and casting methods were used and detected casting defects were analyzed by using electrochemical methods. Three casting alloys (63Co-27Cr-5.5Mo, 63Ni-16Cr, 63Co-30Cr-5Mo) were prepared for fabricating partial denture frameworks with various casting methods; centrifugal casting (Kerr, USA), high frequency induction casting (Jelenko Eagle, USA), vacuum pressure casting (Bego, Germany). The casting temperature was $1,380^{\circ}C$ (63Co-27Cr-5.5Mo and 63Ni-16Cr) and $1,420^{\circ}C$ (63Co-30Cr-5Mo). The casting morphologies were analyzed using FE-SEM and EDX. The corrosion test of the dendritic structure was performed through potentiodynamic method in 0.9% NaCl solutions at $36.5^{\circ}C$ and corrosion surface was observed using SEM. The defects of partial denture frameworks improved in the order of centrifugal casting, high frequency induction casting, and vacuum pressure casting method, especially, pore defects were found at part of clasp in the case of centrifugal casting method. The structure of casting showed dendritic structure for three casting alloys. In the 63Co-27Cr-5.5Mo and 63Co-30Cr-5Mo, $\alpha$-Co and $\varepsilon$-Co phases were identified at matrix and $${\gamma}$-Ni_2$Cr second phase were shown in 63Ni-16Cr. Also, the corrosion resistance of cast structure increased in the order of vacuum pressure casting, high frequency induction casting, and centrifugal casting method.

A study on Defect Control of Al-12%Si Alloy by Partial Squeeze Die Casting Method (스퀴즈 병용 다이캐스팅법에 의한 Al-12%Si 합금의 결함제어에 관한 연구)

  • Kim, Ok-Soo;Kim, Yong-Hyun;Lee, Kwang-Hak;Kim, Heung-Sik
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.377-387
    • /
    • 1995
  • Partial squeeze die casting is a special die casting process which combines squeeze technique to conventional die casting. The influence of squeeze pressure $(1500-3000kg/cm^2)$ and time-lags(0.5-2.0sec) on defect control, density and microstructure of ADC12 alloy die casts has been studied by appling partial squeeze die casting to air compressure front housing production. Defect free, maximum density of $2.736kg/cm^3$ with sound microstructure of ADC12 alloy die cast has been obtained by partial squeeze die casting technique at the pressure of $2000-2500kg/cm^2$ and time-lags of 1.0-2.0sec.

  • PDF

Study on Regenerative Rankine Cycle with Partial-Boiling Flow Using Ammonia-Water Mixture as Working Fluid (암모니아-물 작동유체의 부분증발유동을 적용한 재생 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.223-230
    • /
    • 2011
  • The power cycle using ammonia-water mixture as a working fluid is a possible way to improve efficiency of the system of low-temperature source. In this work thermodynamic performance of the ammonia-water regenerative Rankine cycle with partial-boiling flow is analyzed for purpose of extracting maximum power from the source. Effects of the system parameters such as mass fraction of ammonia, turbine inlet pressure or ratio of partial-boiling flow on the system are parametrically investigated. Results show that the power output increases with the mass fraction of ammonia but has a maximum value with respect to the turbine inlet pressure, and is able to reach 22 kW per unit mass flow rate of source air at $180^{\circ}C$.

A Method to Monitor Vacuum Degree Using Capacitive Partial Discharge Coupler

  • Sun, Jong-Ho;Youn, Young-Woo;Hwang, Don-Ha;Yi, Sang-Hwa;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.959-964
    • /
    • 2012
  • Internal pressure of vacuum interrupter (VI) is one of the most important parameters in VI operation and may increase due to the outgassing from the materials inside VI or gas permeation through metal flange or ceramic vessel. The increase of the pressure above a certain level leads to the failures of switching or insulation. Therefore, an effective pressure check of VI is essential and an analysis of partial discharge (PD) characteristics is an effective monitoring method to identify the degree of the internal pressure of VI. This paper introduces a research work on monitoring the internal pressure of VI by analyzing PDs which were measured using a capacitive PD coupler. The authors have developed cost effective capacitive coupler based on the ceramic material that has an excellent insulation properties and the main component of the capacitive coupler is made by SrTiO3. Detectable internal pressure range and distinguishability of the internal pressure of VI were investigated. From the PD tests results, the internal pressure range, from $10^{-2}$ torr to 500 torr, can be monitored by PD measurements using the capacitive coupler and PD inception voltage (PDIV) follows the Paschen's law. In addition, rise time of PD pulse at 13.2kV decreases with the increase of the internal pressure of VI.

Effects of oxygen partial pressure on electrical properties of transparent semiconducting indium zinc tin oxide thin films (IZTO 투명 반도체 박막의 전기적 특성에 대한 산소분압의 영향)

  • Lee, Keun-Young;Shin, Han-Jae;Han, Dong-Cheul;Kim, Sang-Woo;Lee, Do-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.93-94
    • /
    • 2009
  • The influences of $O_2$ partial pressure on electrical properties of transparent semiconducting indium zinc tin oxide thin films deposited at room temperature by magnetron sputtering have been investigated. The experimental results show that by varying the $O_2$ partial pressure during deposition, electron mobilities of IZTO thin film can be controlled between 7 and $25\;cm^2/Vs$. For conducting films, the carrier concentration and resistivity are ${\sim}\;10^{21}\;cm^{-3}$ and ${\sim}\;10^{-4}\;{\Omega}\;cm$, respectively. Concerning semiconducting films, under 12% $O_2$ partial fraction, the electron concentration is $10^{18}\;cm^{-3}$, showing the promising candidate for the application of transparent thin film transistors.

  • PDF

Effect of O2 Partial Pressure on AlOx Thin Films Prepared by Reactive Ion Beam Sputtering Deposition

  • Seong, Jin-Wook;Yoon, Ki-Hyun;Kim, Ki-Hwan;Beag, Young-Whoan;Koh, Seok-Keun
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.364-369
    • /
    • 2004
  • The barrier and optical properties of AlO$_{x}$ thin films on polycarbonate deposited by Reactive Ion Beam Sputtering (RIBS) were investigated at different oxygen partial pressure. We measured the deposition rate of AlO$_{x}$ thin films. As the oxygen partial pres-sure increased, the deposition rate increased then decreased. The changes of deposition rate are associated with the properties of deposited films. The properties of deposited AlO$_{x}$ thin films were studied using X-ray Photoelectron Spectroscopy (XPS), Scan-ning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). Optimum deposition parameters were found for fabricat-ing aluminum oxide thin films with high optical transparency for visible light and low Oxygen Transmission Rate (OTR). The optical transmittance of AlO$_{x}$ thin film deposited on polycarbonate (PC) showed the same value of bare PC.bare PC.

Thermal-Mixing Analyses for Safety Injection at Partial Loop Stagnation of a Nuclear Power Plant

  • Hwang, Kyung-Mo;Kim, Kyung-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1380-1387
    • /
    • 2003
  • When a cold HPSI (High pressure Safety Injection) fluid associated with an overcooling transient, such as SGTR (Steam Generator Tube Rupture), MSLB (Main Steam Line Break) etc., enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena will arise due to incomplete mixing. If the stratified flow enters the downcomer of the reactor pressure vessel, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. As general thermal-hydraulic system analysis codes cannot properly predict the thermal stratification phenomena, RG 1.154 requires that a detailed thermal-mixing analysis of PTS (pressurized Thermal Shock) evaluation be performed. Also. previous PTS studies have assumed that the thermal stratification phenomena generated in the stagnated loop side of a partially stagnated primary coolant loop are neutralized in the vessel downcomer by the strong flow from the unstagnated loop. On the basis of these reasons, this paper focuses on the development of a 3-dimensional thermal-mixing analysis model using PHOENICS code which can be applied to both partial and total loop stagnated cases. In addition, this paper verifies the fact that, for partial loop stagnated cases, the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is almost neutralized by the strong flow of the unstagnated loop but is not fully eliminated.

Study of Design & CFD Analysis for Partial DPF Utilizing Metal Foam (금속폼을 이용한 Partial DPF의 설계 및 전산유체해석 연구)

  • Yoon, Cheon-Seog;Cho, Gyu-Baek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.24-34
    • /
    • 2009
  • DPF(Diesel Particulate Filter)s have been used to reduce the most of PM(particulate matters) from the exhaust emissions of diesel engine vehicles. Metal foam is one of promising materials for the DPFs due to its cost effectiveness, good thermal conductivity and high mechanical strength. It can be fabricated with various pore sizes and struct thickness and coated with catalytic wash-coats with low cost. In order to design metal foam filter and analyze the flow phenomena, pressure drop and filtration experiment are carried out. Partial DPF which has PM reduction efficiency of more than 50 % is designed in this paper. Also, CFD analysis are performed for different configurations of clean filters in terms of pressure drop, uniformity index, and velocity magnitude at face of filter. Filter thickness and the gap between front and rear filters are optimized and recommended for manufacturing purpose.