• Title/Summary/Keyword: partial oxidation

Search Result 308, Processing Time 0.027 seconds

Characteristics of LPG fuel Reforming in Plasma Reformer for Hydrogen Production (수소 생성을 위한 플라즈마 개질기에서의 LPG 연료의 개질 특성)

  • Park, Yunhwan;Lee, Deahoon;Kim, Changup;Kang, Kernyong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.8-14
    • /
    • 2013
  • In this study, characteristics of the geometric design changes of plasma reformer for LPG fuelled vehicles were studied. To improve the yield of hydrogen, reformer 1st, and 2nd were designed. Secondary reformer compared to the primary reformer to increase the volume of the rear part of reformed gas having passed through the plasma and increased reaction time. To compare reforming results of two reformers, various experimental conditions such as, from partial oxidation to total oxidation conditions $O_2/C$ ratios, and total flow rate of 20, 30, 40, 50 lpm conditions, were varied. Results showed that with increasing $O_2/C$ ratios, LPG conversion rate increased, decreased hydrogen selectivity and hydrogen yield optimal point existed and secondary reformer 4.5 times larger than the primary reformer at the same flow rate to 4~14% increase in the yield of hydrogen.

Electrodeposition of Silicon in Ionic Liquid of [bmpy]$Tf_2N$

  • Park, Je-Sik;Lee, Cheol-Gyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Silicon is one of useful materials in various industry such as semiconductor, solar cell, and secondary battery. The metallic silicon produces generally melting process for ingot type or chemical vapor deposition (CVD) for thin film type. However, these methods have disadvantages of high cost, complicated process, and consumption of much energy. Electrodeposition has been known as a powerful synthesis method for obtaining metallic species by relatively simple operation with current and voltage control. Unfortunately, the electrodeposition of the silicon is impossible in aqueous electrolyte solution due to its low oxidation-reduction equilibrium potential. Ionic liquids are simply defined as ionic melts with a melting point below $100^{\circ}C$. Characteristics of the ionic liquids are high ionic conductivities, low vapour pressures, chemical stability, and wide electrochemical windows. The ionic liquids enable the electrochemically active elements, such as silicon, titanium, and aluminum, to be reduced to their metallic states without vigorous hydrogen gas evolution. In this study, the electrodeposion of silicon has been investigated in ionic liquid of 1-butyl-3-methylpyrolidinium bis (trifluoromethylsulfonyl) imide ([bmpy]$Tf_2N$) saturated with $SiCl_4$ at room temperature. Also, the effect of electrode materials on the electrodeposition and morphological characteristics of the silicon electrodeposited were analyzed The silicon electrodeposited on gold substrate was composed of the metallic Si with single crystalline size between 100~200nm. The silicon content by XPS analysis was detected in 31.3 wt% and the others were oxygen, gold, and carbon. The oxygen was detected much in edge area of th electrode due to $SiO_2$ from a partial oxidation of the metallic Si.

  • PDF

Synthesis of Benzophenone by Oxidation of Diphenylmethane under Aliquat 336 as Phase Transfer Catalyst (Aliquat 336 상이동 촉매하에서 디페닐메탄의 산화에 의한 벤조페논의 합성)

  • Park, Dae-Won;Lee, Hwa-Soo;Moon, Jeong-Yeol;Park, Sang-Wook;Shin, Jung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.74-80
    • /
    • 1994
  • Synthesis of benzophenone by oxidation of diphenylmethane at room temperature is studied using Aliquat 336 as phase transfer catalyst and potassium tert-butoxide as base. No other study has shown that diphenylmethane can be oxidized to benzophenone with quaternary ammonium salt as phase transfer catalyst. However, in presence of Aliquat 336, higher than 30% of benzophenone was yielded. The conversion of diphenylmethane was increased with increasing amount of Aliquat 336 and Potassium tert-butoxide. Higher partial pressure of oxygen favored conversion of diphenylmethane and selectivity of benzophenone by increasing the concentration of oxygen in organic solvent A reaction mechanism involving the role of Aliquat 336 was also proposed.

  • PDF

Piggery Waste Treatment using Partial Nitritation and Anaerobic Ammonium Oxidation (부분질산화와 혐기성 암모늄산화를 이용한 돈사폐수처리)

  • Hwang, In-Su;Min, Kyung-Sok;Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.599-604
    • /
    • 2006
  • Nitrogen removal with the combined SHARON (Single reactor system for high ammonium removal over nitrite)ANAMMOX (Anaerobic ammonium oxidation) process using the effluent of ADEPT (Anaerobic digestion elutriated phased treatment) slurry reactor with very low C/N ratio for piggery waste treatment was investigated. For the preceding SHARON reactor, ammonium nitrogen loading and removal rate were $0.97kg\;NH_4-N/m^3_{reactor}/day$ and $0.68kg\;NH_4-N/m^3_{reactor}/day$ respectively. In steady state, bicarbonate alkalinity consumption for ammonium nitrogen converted to $NO_2-N$ or $NO_3-N$ was 8.4 gram per gram ammonium nitrogen. The successive ANAMMOX reactor was fed with the effluent from SHARON reactor. The loading and removal rate of the soluble nitrogen defined as the sum total of $NH_4-N$, $NO_2-N$ and $NO_3-N$ in ANAMMOX reactor were $1.36kg\;soluble\;N/m^3_{reactor}/day$ and $0.7kg\;soluble\;N/m^3_{reactor}/day$, respectively. The average $NO_2-N/NH_4-N$ removal ratio by ANAMMOX was 2.41. Fluorescence in situ hybridization (FISH) analysis verified that Candidatus Kuenenia stuttgartiensis were dominate, which means that they played an important role of nitrogen removal in ANAMMOX reactor.

Biomethanol Conversion from Biogas Produced by Anaerobic Digestion (혐기소화에 의한 Biogas 생산과 Biomethanol 전환에 관한 고찰)

  • Nam, Jae Jak;Shin, Joung Du;Hong, Seung Gil;Hahm, Hyun Sik;Park, Woo Kyun;So, Kyu Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.4
    • /
    • pp.93-103
    • /
    • 2006
  • Biogas is a byproduct after anaerobic digestion of organic materials and has been used as an energy source for heating and generating electricity. Demands of methanol for fuel mixed with gasoline and reactant in biodiesel production are steadily being increased. In this review, we summarized recent advancements in direct partial oxidation of methane to methanol with the brief history of methanol synthesis. The steam reforming and the catalytic oxidation of methane to methanol were compared, the former of which are mainly used in industrial scale and the latter in a stage of research and development. On the basis of this review, the possibility of methanol conversion from biogas was proposed in the aspects of the technological feasibility and the economical practicability.

  • PDF

Oxidation Reaction of CO and $C_2H_4$ on Zinc Oxide (산화아연에서의 CO, $C_2H_4$의 산화반응)

  • Chong Soo Han;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.218-224
    • /
    • 1980
  • The surface reactions of CO and $C_2H_4$ with adsorbed oxygen on ZnO were studied by means of EPR spectroscopy. The EPR spectra of $O_2$ adsorbed ZnO at various temperatures were compared, and the signal at g = 2.014 was characterized as trapped $O^-$ at oxygen vacancy. CO and $C_2H_4$ react with $O^-$ at $25^{\circ}C$ and desorbed as $CO_2$ and $H_2O$ above $200^{\circ}C$. $O_2^-$ species interact with $C_2H_4$ about $100^{\circ}C$, but desorption of partial oxidation products also was not observed until the temperature was raised to $200^{\circ}C$.

  • PDF

Characteristics of Ammonia Removal by Natural Neutralizer (천연중화제를 이용한 암모니아 제거특성)

  • Kim, Tak-Hyun;Park, Hyung-Yong;Kim, Sangyong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.651-659
    • /
    • 2000
  • The characteristics of ammonia removal by natural neutralizer were studied by using a scrubber type equipment. As operation parameters, neutralizer dilution ratio, neutralizer inlet flowrate, air flowrate and initial ammonia concentration were selected and their effects on ammonia removal efficiency were investigated. The optimal removal effect was achieved at neutralizer dilution ratio of 1.0% and neutralizer inlet flowrate of $60m{\ell}/min$. On the other hand, with respect to air flowrate and initial ammonia concentration, there was no significant effect on removal efficiency, when loading rate was considered. In addition, ammonia removal reaction was investigated by analyzing the ammonia oxides, such as nitrites and nitrates, after reacting ammonium solution with natural neutralizer. The result shows a partial oxidation by natural neutralizer besides dominant absorption of ammonia.

  • PDF

Synthesis and Characterization of Tetrathiafulvalene (TTF) and 7,7,8,8-Tetracyanoquinodimethane (TCNQ) Compounds with PdX2(X=CI, NO3and Hexafluoroacetylacetonate)

  • Kim, Young-Inn;Jeong, Chan-Kyou;Lee, Yong-Min;Choi, Sung-Nak
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1754-1758
    • /
    • 2002
  • Tetrathiafulvalene(TTF) reacts with $PdCl_2,Pd(NO_3)_2$ and $Pd(hfacac)_2$(hexafluoroacetylacetonate) in ethanol to give $(TTF)_{1.5}PdCl_2$ (1a), $(TTF)_3Pd(NO_3)_2$ (1b) and $(TTF)_4Pd(hfacas)_2$ nd (1c), respectively. $PdCl(TCNQ)_{2.5}{\cdot}CH_3OH(2a)$was obtained from the reaction of $PdCl_2$ with LiTCNQ in methanol via the partial replacement of $Cl^-$ in $PdCl_2$ by $TCNQ^-$anion, whereas the total substitution of the labile $NO_3^-$ in $Pd(NO_3)_2$ yielded pd(TCNQ)·$CH_3OH$ (2b). $Pd(hfacac)_2(TCNQ)_2\cdot3CH_3OH$ (2c) was obtained from $Pd(hfacac)_2$ and LiTCNQ in methanol. The prepared compounds were characterized by spectroscopic (IR, UV, XPS) methods and magnetic (EPR, magnetic susceptibility) studies. The powdered electrical conductivities (${\sigma}_{rt}$) of the prepared compounds at room temperature were about~$10^{-7}S{\cdot}cm^{-1}$. The effective magnetic moments were lass than the spin-only value of one unpaired electron and no EPR signals from Pd metal ions were observed in any of the compounds, indicating that the Pd ions were diamagnetic and the magnetic moments arose from$(TTF)_n$ or $(TCNQ)_n$ moieties. The experimental evidences revealed that the charge transfer had occurred form $(TTF)_n$ moiety to the central Pd metal ion in 1a, 1b and 1c. Thus the TTF donors were ions in 2a and 2b were diamagnetic Pd(II) oxidation state. In contrast, the Pd metal ion was oxidized to Pd(IV) state in 2c as a result of an addition of $TCNQ^-$anion to $Pd(hfacac)_2$ in methanol. The oxidation states of the Pd metal ions were confirmed using the x-ray photoelectron spectroscopy.

Oxygen Permeation and Hydrogen Production of BaCo1-x-yFexZryO3-δ by a Modified Glycine-nitrate Process (MGNP) (Modified glycine-nitrate process(MGNP)로 합성한 BaCo1-x-yFexZryO3-δ 산소투과도 및 수소생산성)

  • Yi, Eunjeong;Hwang, Haejin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • A dense mixed ionic and electronic conducting ceramic membrane is one of the most promising materials because it can be used for separation of oxygen from the mixture gas. The $ABO_3$ perovskite structure shows high chemical stability at high temperatures under reduction and oxidation atmospheres. $BaCo_{1-x-y}Fe_xZr_yO_{3-{\delta}}$ (BCFZ) was well-known material as high mechanical strength, low thermal conductivity and stability in the high valence state. Glycine Nitrate Process (GNP) is rapid and effective method for powder synthesis using glycine as a fuel and show higher product crystallinity compared to solid state reaction and citrate-EDTA method. BCFZ was fabricated by modified glycine nitrate process. In order to control the burn-up reaction, $NH_4NO_3$ was used as extra nitrate. According to X-Ray Diffraction (XRD) results, BCFZ was single phase regardless of Zr dopants from y=0.1 to 0.3 on B sites. The green compacts were sintered at $1200^{\circ}C$ for 2 hours. Oxygen permeability, methane partial oxidation rate and hydrogen production ability of the membranes were characterized by using Micro Gas Chromatography (Micro GC) under various condition. The high oxygen permeation flux of BCFZ 1-451 was about $1ml{\cdot}cm^{-2}s^{-1}$. Using the humidified Argon gas, BCFZ 1-433 produced hydrogen about $1ml{\cdot}cm^{-2}s^{-1}$.

Catalytic Characteristics of Perovskite-type Oxides under Mixed Methane and Oxygen Gases (메탄-산소 혼합가스 조건에서의 페롭스카이트계 산화물의 촉매특성 평가)

  • Ahn, Ki-Yong;Kim, Hyoung-Chul;Chung, Yong-Chae;Son, Ji-Won;Lee, Hae-Won;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.232-237
    • /
    • 2008
  • As the single chamber SOFC(SC-SOFC) showed higher prospect on reducing the operation temperature as well as offering higher design flexibility of SOFCs, lots of concerns have been given to investigate the catalytic activity of perovskite-type oxide in mixed fuel and oxidant conditions. Hence we thoroughly investigated the catalytic property of various perovskite-type oxides such as $La_{0.8}Sr_{0.2}MnO_3(LSM),\;La_{0.6}Sr_{0.4}CoO_3(LSC),\;La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3(LSCF),\;Sm_{0.5}Sr_{0.5}CoO_3(SSC),\;and\;Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}(BSCF)$ under the partial oxidation condition of methane which used to be given for SC-SOFC operation. In this study, powder form of each perovskite oxides whose surface areas were controlled to be equal, were investigated as functions of methane to oxygen ratios and reactor temperature. XRD, BET and SEM were employed to characterize the crystalline phase, surface area and microstructure of prepared powders before and after the catalytic oxidation. According to the gas phase analysis with flow-through type reactor and gas chromatography system, LSC, SSC, and LSCF showed higher catalytic activity at fairly lower temperature around $400^{\circ}C{\sim}450^{\circ}C$ whereas LSM and BSCF could be activated at much higher temperature above $600^{\circ}C$.