• Title/Summary/Keyword: partial least squares

Search Result 620, Processing Time 0.028 seconds

EXTENSION OF FACTORING LIKELIHOOD APPROACH TO NON-MONOTONE MISSING DATA

  • Kim, Jae-Kwang
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.401-410
    • /
    • 2004
  • We address the problem of parameter estimation in multivariate distributions under ignorable non-monotone missing data. The factoring likelihood method for monotone missing data, termed by Rubin (1974), is extended to a more general case of non-monotone missing data. The proposed method is algebraically equivalent to the Newton-Raphson method for the observed likelihood, but avoids the burden of computing the first and the second partial derivatives of the observed likelihood. Instead, the maximum likelihood estimates and their information matrices for each partition of the data set are computed separately and combined naturally using the generalized least squares method.

Thermal vibration analysis of thick laminated plates by the moving least squares differential quadrature method

  • Wu, Lanhe
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.331-349
    • /
    • 2006
  • The stresses and deflections in a laminated rectangular plate under thermal vibration are determined by using the moving least squares differential quadrature (MLSDQ) method based on the first order shear deformation theory. The weighting coefficients used in MLSDQ approximation are obtained through a fast computation of the MLS shape functions and their partial derivatives. By using this method, the governing differential equations are transformed into sets of linear homogeneous algebraic equations in terms of the displacement components at each discrete point. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Solving this set of algebraic equations yields the displacement components. Then substituting these displacements into the constitutive equation, we obtain the stresses. The approximate solutions for stress and deflection of laminated plate with cross layer under thermal load are obtained. Numerical results show that the MLSDQ method provides rapidly convergent and accurate solutions for calculating the stresses and deflections in a multi-layered plate of cross ply laminate subjected to thermal vibration of sinusoidal temperature including shear deformation with a few grid points.

Block-wise Adaptive Predictive PLS using Block-wise Data Extraction (데이터 추출 과정을 적용한 Block-wise Adaptive Predictive PLS)

  • Kim Sung-Young;Chung Chang-Bock;Choi Soo-Hyoung;Lee Bom-Sock
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.706-712
    • /
    • 2006
  • Recursive Partial Least Squares(RPLS) method has been used for processing the on-line available multivariate chemical process data and modeling adaptive prediction model for process changes. However, RPLS method is unstable in PLS model updating because RPLS method updates PLS model by merging past PLS model and new data. In this study, Adaptive Predictive Partial Least Squres(APPLS) method is suggested for more sensitive adaptation to process changes. By expanding APPLS method, block-wise Adaptive Predictive Partial Least Squares(block-wise APPLS) method is suggested for a lager scale data of chemical processes. APPLS method has been applied to predict the reactor properties and the product quality of a direct esterification reactor for polyethylene terephthalate(PTT), and block-wise APPLS method has been applied to predict the cetane number using NIR Diesel Spectra data. APPLS and block-wise APPLS methods show better prediction and updating performance than RPLS method.

Learning Method for Real-time Crime Prediction Model Utilizing CCTV

  • Bang, Seung-Hwan;Cho, Hyun-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.91-98
    • /
    • 2016
  • We propose a method to train a model that can predict the probability of a crime being committed. CCTV data by matching criminal events are required to train the crime prediction model. However, collecting CCTV data appropriate for training is difficult. Thus, we collected actual criminal records and converted them to an appropriate format using variables by considering a crime prediction environment and the availability of real-time data collection from CCTV. In addition, we identified new specific crime types according to the characteristics of criminal events and trained and tested the prediction model by applying neural network partial least squares for each crime type. Results show a level of predictive accuracy sufficiently significant to demonstrate the applicability of CCTV to real-time crime prediction.

A Hybrid Fault Diagnosis Method based on SDG and PLS;Tennessee Eastman Challenge Process

  • Lee, Gi-Baek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.110-115
    • /
    • 2004
  • The hybrid fault diagnosis method based on a combination of the signed digraph (SDG) and the partial least-squares (PLS) has the advantage of improving the diagnosis resolution, accuracy and reliability, compared to those of previous qualitative methods, and of enhancing the ability to diagnose multiple fault. In this study, the method is applied for the multiple fault diagnosis of the Tennessee Eastman challenge process, which is a realistic industrial process for evaluating process contol and monitoring methods. The process is decomposed using the local qualitative relationships of each measured variable. Dynamic PLS (DPLS) model is built to estimate each measured variable, which is then compared with the estimated value in order to diagnose the fault. Through case studies of 15 single faults and 44 double faults, the proposed method demonstrated a good diagnosis capability compared with previous statistical methods.

  • PDF

Development of Prediction Model for Moisture and Protein Content of Single Kernel Rice using Spectroscopy (분광분석법을 이용한 단립 쌀의 함수율 및 단백질 함량 예측모델 개발)

  • 김재민;최창현;민봉기;김종훈
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • The objectives of this study were to develop models to predict the contents of moisture and protein of single kernel of brown rice based on visible/NIR (near-infrared) spectroscopic technique. The reflectance spectra of rice were obtained in the range of the wavelength 400 to 2,500 nm with 2 nm intervals. Multiple linear regression(MLR) and partial least squares (PLS) were used to develop the models. The MLR model using the first derivative spectra(10 nm of gap) with Standard Normal Variate and Detrending (SNV and Drt.) preprocessing showed the best results to predict moisture content of the sin린e kernel brown rice. To predict the protein content of a single kernel of brown ricer the PLS model used the raw spectra with multiplicative scatter correction(MSC) preprocessing over the wavelength of 1,100~1,500 nm.

  • PDF

Estimation of a Structural Equation Model Including Brand Choice Probabilities (브랜드 선택확률 분석을 위한 구조방정식 모형)

  • Lee, Sang-Ho;Lee, Hye-Seon;Kim, Yun-Dae;Jun, Chi-Hyuck
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • The partial least squares (PLS) method is popularly used for estimating the structural equation model, but the existing algorithm may not be directly implemented when probabilities are involved in some constructs or manifest variables. We propose a structural equation model including the brand choice as one construct having brand choice probabilities as its manifest variables. Then, we develop a PLS-based algorithm for the structural equation model by utilizing the multinomial logit model. A case is introduced as an application and simulation studies are performed to validate the proposed algorithm.

Face recognition by PLS

  • Baek, Jang-Sun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.69-72
    • /
    • 2003
  • The paper considers partial least squares (PLS) as a new dimension reduction technique for the feature vector to overcome the small sample size problem in face recognition. Principal component analysis (PCA), a conventional dimension reduction method, selects the components with maximum variability, irrespective of the class information. So PCA does not necessarily extract features that are important for the discrimination of classes. PLS, on the other hand, constructs the components so that the correlation between the class variable and themselves is maximized. Therefore PLS components are more predictive than PCA components in classification. The experimental results on Manchester and ORL databases show that PLS is to be preferred over PCA when classification is the goal and dimension reduction is needed.

  • PDF

Quantitative Analysis of Taurine Using Near Infrared Spectrometry (NIRS) (근적외선 분광분석법을 이용한 타우린의 정량 분석)

  • Cho, Chang-Hee;Kim, Hyo-Jin;Meang, Dae-Young;Seo, Sang-Hun;Cho, Jung-Hwan
    • YAKHAK HOEJI
    • /
    • v.42 no.6
    • /
    • pp.545-551
    • /
    • 1998
  • Near Infrared transmittance Spectroscopy (NIRS) was used to evaluate and quantify the pharmaceutical active compounds. In the paper, taurine (2-Aminoethanesulfonic acid) was quantitatively analyzed in commercial pharmaceutical preparations. For calibration a central composite factorial design was used to determine concentrations of ingredients in reference samples. For the quantitative analysis of taurine, the most suitable data analysis method includes the calculation of second derivatives and a partial least squares regression (PLSR) model. By NIR spectrometry, combined with PLSR, the taurine concentration was successfully predicted with a relative standard error of prediction (SEP) lower than 1.04%.

  • PDF

Use of partial least squares analysis in concrete technology

  • Tutmez, Bulent
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.173-185
    • /
    • 2014
  • Multivariate analysis is a statistical technique that investigates relationship between multiple predictor variables and response variable and it is a very commonly used statistical approach in cement and concrete industry. During model building stage, however, many predictor variables are included in the model and possible collinearity problems between these predictors are generally ignored. In this study, use of partial least squares (PLS) analysis for evaluating the relationships among the cement and concrete properties is investigated. This regression method is known to decrease the model complexity by reducing the number of predictor variables as well as to result in accurate and reliable predictions. The experimental studies showed that the method can be used in the multivariate problems of cement and concrete industry effectively.