Co-firing of renewable fuel in coal fired boilers is an attractive option to mitigate $CO_2$ emissions, since it is a relatively low cost option for efficiently converting renewable fuel to electricity by adding biomass as partial substitute of coal. However, it would cause reducing plant efficiency and operational flexibility, and increasing operation and capital cost associated with handling and firing equipment of renewable fuels. The aim of this study is to investigate the effects of biomass co-firing on $CO_2$ emission and capital/operating cost. Wood pellet, PKS (palm kernel shell), EFB (empty fruit bunch) and sludge are considered as renewable fuels for co-firing with coal. Several approaches by the co-firing ratio are chosen from previous plant demonstrations and commercial co-firing operation, and they are evaluated and discussed for $CO_2$ reduction and cost estimation.
In case of developing new motor, many examinations was tested to decide a motor efficiency and reliability. To give reliability judgment, traction motor winding insulation was tested by electrical method after appling electrical, heat, mechanical, environmental stress. In this study, stator form-wound winding of traction motor in urban transit E.M.U was tested by accelerative thermal degradation test. Stator form-wound winding was tested on the accelerative degradation composed of heat, vibration, moisture, overvoltage and researched insulation resistance, dielectric loss, partial discharge for insulation degradation properties, evaluated withstand voltage. Degradation temperature was $230[^\circ{C}]$, $250[^\circ{C}]$, $270[^\circ{C}]$, for stator form-wound winding respectively. On the test results of accelerative thermal degradation, insulation properties were relied all temperature until 10 times and expected life was evaluated by the rule of reducing $10[^\circ{C}]$ life into halves. Expected life was 31.8 years. It is guaranteed insulation reliability because of exceeding 25 years life times as considering.
Stability characteristics of hyperbolic reaction-diffusion equations with a reversible Brusselator model are investigated as an extension of the previous work. Intensive stability analysis is performed for three important parameters, Nrd, β and Dx, where Nrd is the reaction-diffusion number which is a measure of hyperbolicity, β is a measure of reversibility of autocatalytic reaction and Dx is a diffusion coefficient of intermediate X. Especially, the dependence on Nrd of stability exhibits some interesting features, such as hyperbolicity in the small Nrd region and parabolicity in the large Nrd region. The hyperbolic reaction-diffusion equations are solved numerically by a spectral method which is modified and adjusted to hyperbolic partial differential equations. The numerical method gives good accuracy and efficiency even in a stiff region in the case of small Nrd, and it can be extended to a two-dimensional system. Four types of solution, spatially homogeneous, spatially oscillatory, spatio-temporally oscillatory and chaotic can be obtained. Entropy productions for reaction are also calculated to get some crucial information related to the bifurcation of the system. At the bifurcation point, entropy production changes discontinuously and it shows that different structures of the system have different modes in the dissipative process required to maintain the structure of the system. But it appears that magnitude of entropy production in each structure give no important information related for states of system itself.
Wood identification is regularly performed by observing the wood anatomy, such as colour, texture, fibre direction, and other characteristics. The manual process, however, could be time consuming, especially when identification work is required at high quantity. Considering this condition, a convolutional neural networks (CNN)-based program is applied to improve the image classification results. The research focuses on the algorithm accuracy and efficiency in dealing with the dataset limitations. For this, it is proposed to do the sample selection process or only take a small portion of the existing image. Still, it can be expected to represent the overall picture to maintain and improve the generalisation capabilities of the CNN method in the classification stages. The experiments yielded an incredible F1 score average up to 93.4% for medium sample area sizes (200 × 200 pixels) on each CNN architecture (VGG16, ResNet50, MobileNet, DenseNet121, and Xception based). Whereas DenseNet121-based architecture was found to be the best architecture in maintaining the generalisation of its model for each sample area size (100, 200, and 300 pixels). The experimental results showed that the proposed algorithm can be an accurate and reliable solution.
2009년에 전동호 등에 의해 경량의 강한 인증과 프라이버시를 제공하는 프로토콜이 제안되었다. 태그는 단지 간단한 비트연산들과 난수생성기를 필요로 한다. JK-RFID 인증 프로토콜은 도청, 재전송, 스푸핑, 위치추적, 서비스거부 공격, 전방향 안전성에 대한 강한 보안성을 제공한다. 하지만, 본 논문에서는 전방향 안전성에 대한 취약성을 지적하고 키 업데이트 과정에 대한 연산을 개선하였다. 본 논문은 전방향 안전성을 보장하는 개선된 JK-RFID 인증 프로토콜을 제안하고 전방향 안전성을 만족함을 검증하였다. 또한, 제안된 프로토콜의 안전성과 효율성을 분석하였다. 제안 프로토콜은 JK-RFID 인증 프로토콜에서 키 업데이트 부분의 연산을 수정하여 전방향 안전성을 개선하였다.
In the field of nuclear medicine, errors are sometimes generated because the assessment of the uniformity of gamma cameras relies on the naked eye of the evaluator. To minimize these errors, we created an artificial intelligence model based on CNN algorithm and wanted to assess its usefulness. We produced 20,000 normal images and partial cold region images using Python, and conducted artificial intelligence training with Resnet18 models. The training results showed that accuracy, specificity and sensitivity were 95.01%, 92.30%, and 97.73%, respectively. According to the results of the evaluation of the confusion matrix of artificial intelligence and expert groups, artificial intelligence was accuracy, specificity and sensitivity of 94.00%, 91.50%, and 96.80%, respectively, and expert groups was accuracy, specificity and sensitivity of 69.00%, 64.00%, and 74.00%, respectively. The results showed that artificial intelligence was better than expert groups. In addition, by checking together with the radiological technologist and AI, errors that may occur during the quality control process can be reduced, providing a better examination environment for patients, providing convenience to radiologists, and improving work efficiency.
In the developed NMR hyperpolarization techniques, Signal amplification by reversible exchange (SABRE) technique is thought to be a promising method to overcome the low sensitivity of bio-NMR/MRI. Most experiments using SABRE have been done in methanol, which is biologically harmful solvent. Therefore, more biological friendly solvent, such as ethanol can be more appropriate solvent to be applicable in bio-NMR and MRI. As the proof of concept, successful hyperpolarization on pyridine via SABRE is carried out in ethanol and its enhancement factor is calculated to be more than 150 folds. To investigate more about its possibility of hyperpolarization in different alcohol solvents, methanol and propanol are used for SABRE in the same condition. The overall polarization trend in different external magnetic field is similar but its polarization number is decreased with higher molecular weight solvents (the order from methanol to propanol). This result indicates that the efficiency of SABRE is different from solvent system despite its same functional group and similar properties. Higher para-hydrogen concentration, higher partial pressure of para-hydrogen, and deuterated solvent can increase the hyperpolarization in any solvents. With these series of successful SABRE results, future studies on SABRE in more biofriendly environment, on more various solvent systems, and with more substrates are needed and it will be the firm basis for applying the SABRE system on the future bio-NMR/MRI.
This study investigates the capability of Physics-Informed Neural Networks (PINNs) for solving the solution of partial differential equations. Particularly, the 1D Saint-Venant Equations (SVEs) were considered, which describe the movement of water in a domain with shallow depth compared to its horizontal extent, and are widely adopted in hydrodynamics, river, and coastal engineering. The core contribution of this work is to combine the robustness of neural networks with the physical constraints of the SVEs. The PINNs method utilized a neural network to approximate the solutions of SVEs, while also enforcing the underlying physical principles of the equations. This allows for a more effective and reliable solution, especially in areas with complex geometry and varying bathymetry. To validate the robustness of the PINNs method, numerical experiments were conducted on several benchmark problems. The results show that the PINNs could be achieved high accuracy when compared with the solution from the numerical solution. Overall, this study demonstrates the potential of using PINNs and highlights the benefits of integrating neural network and physics information for improved efficiency and accuracy in solving SVEs.
This paper proposes an efficient approach for the structural topology optimization of bi-directional functionally graded structures by incorporating popular radial basis functions (RBFs) into an implicit level set (ILS) method. Compared to traditional element density-based methods, a level set (LS) description of material boundaries produces a smoother boundary description of the design. The paper develops RBF implicit modeling with multiquadric (MQ) splines, thin-plate spline (TPS), exponential spline (ES), and Gaussians (GS) to define the ILS function with high accuracy and smoothness. The optimization problem is formulated by considering RBF-based nodal densities as design variables and minimizing the compliance objective function. A LS-RBF optimization method is proposed to transform a Hamilton-Jacobi partial differential equation (PDE) into a system of coupled non-linear ordinary differential equations (ODEs) over the entire design domain using a collocation formulation of the method of lines design variables. The paper presents detailed mathematical expressions for BiDFG beams topology optimization with two different material models: continuum functionally graded (CFG) and mechanical functionally graded (MFG). Several numerical examples are presented to verify the method's efficiency, reliability, and success in accuracy, convergence speed, and insensitivity to initial designs in the topology optimization of two-dimensional (2D) structures. Overall, the paper presents a novel and efficient approach to topology optimization that can handle bi-directional functionally graded structures with complex geometries.
We develop in this work a new well-balanced preserving-positivity path-conservative central-upwind scheme for Saint-Venant-Exner (SVE) model. The SVE system (SVEs) under some considerations, is a nonconservative hyperbolic system of nonlinear partial differential equations. This model is widely used in coastal engineering to simulate the interaction of fluid flow with sediment beds. It is well known that SVEs requires a robust treatment of nonconservative terms. Some efficient numerical schemes have been proposed to overcome the difficulties related to these terms. However, the main drawbacks of these schemes are what follows: (i) Lack of robustness, (ii) Generation of non-physical diffusions, (iii) Presence of instabilities within numerical solutions. This collection of drawbacks weakens the efficiency of most numerical methods proposed in the literature. To overcome these drawbacks a reformulation of the central-upwind scheme for SVEs (CU-SVEs for short) in a path-conservative version is presented in this work. We first develop a finite-volume method of the first order and then extend it to the second order via the averaging essentially non oscillatory (AENO) framework. Our numerical approach is shown to be well-balanced positivity-preserving and shock-capturing. The resulting scheme could be seen as a predictor-corrector method. The accuracy and robustness of the proposed scheme are assessed through a carefully selected suite of tests.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.