• Title/Summary/Keyword: part deformation

Search Result 922, Processing Time 0.028 seconds

An FE-based Model for the Prediction of Deformed Roll Profile in Multi-high Rolling Mills - Part II : Application to a Sendzimir Mill (다단 압연기에서의 롤 변형 프로파일 예측 모델 - Part II : 젠지미어 압연기로의 적용)

  • Cho, J.H.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.426-431
    • /
    • 2012
  • The work roll of a Sendzimir mill has a small diameter in comparison to its length, so it is easily deformed by the rolling pressure. It also has a complex back up roll system, so it is difficult to analyze the roll deformation. For this reason in Part I we have developed a model which predicts the radial displacement of the roll. In this paper, we apply the model to a Sendzimir mill and propose a new model for the prediction of the deformed roll profile in a Sendzimir mill. The prediction accuracy of the new model is demonstrated through comparison of the predictions from the FE model.

A study on the flashes and filling defects of inner part and on problem-solving measures (내통의 플래시 및 충진불량에 대한 해결방법에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang;Lee, Choon-kyu
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.79-83
    • /
    • 2012
  • Inner part is used as an insulator in wire fuses. After injection molding, inner part has been showed flashes, filling defects and deformation. After production, operators have to cut off flashes, one by one. this process leads to continuous low productivity and loss of source materials. This study focuses on identifying the causes for flashes, filling defects, clamping force of injectors, mold adhesion, resin of liquidity and others, and on resolving those issues.

  • PDF

Three Dimensional Finite Element Analysis for Powder Forging Process (분말단조 공정의 3차원 유한요소해석)

  • 김형섭
    • Journal of Powder Materials
    • /
    • v.3 no.2
    • /
    • pp.104-111
    • /
    • 1996
  • In order to obtain homogeneous and high quality products in powder compaction forging process, it is very important to control stress, strain, density and density distributions. Therefore, it is necessary to understand quantitatively the elasto-plastic deformation and densification behaviors of porous metals and metal powders. In this study, elasto-plastic finite element method using Lee-Kim's pressure dependent porous material yield function has been used for the analysis of three dimensional indenting process. The analysis predicts deformed geometry, stress, strain and density distribution and load. The calculated load is in good agreement with experimental one. The calculated results do not show axisymmetric distributions because of the edge effect. The core part which is in contact with the indentor and the outer diagonal edge part are in compressive stress states and the middle part is in tensile stress state. As a results, it can be concluded that three dimensional analysis is more realistic than axisymmetric assumption approach.

  • PDF

Design Guideline for Press Tool Structure of Ultra-high Strength Steel Part with Shape Optimization Technique (형상최적화 기법을 이용한 초고강도강판 성형용 프레스 금형의 구조설계 가이드라인)

  • Kang, K.H.;Kwak, J.H.;Bae, S.B.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.372-377
    • /
    • 2017
  • In this paper, an effective design procedure was proposed to design the rib of die structure for auto-body member with ultra-high strength steel (UHSS) having ultimate tensile strength (UTS) of 1.5 GPa. From analysis results of the die structure, structural safety of the die was evaluated with information such as displacement and von-Mises stress. It was concluded that the casting part could be designed in order to reduce tool deformation. A design guideline of the die structure was proposed, especially for the rib structure in the casting part with an optimization scheme and local reinforcement concept. Simulation result following the design guideline fully explained that stability of the tool structure could be obtained simultaneously with weight minimization.

Study on the Design of Steering Wheels for Maximum Protection of Drivers during Crash (충돌안전성을 고려한 승용차용 조향핸들의 최적설계에 관한 연구)

  • 이윤형;김권희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.130-137
    • /
    • 1997
  • During crash of a vehicle a major part of the kinetic energy of the driver is absorbed by a steering system. The deformation characteristics of the steering system has significant effects on the injury of the driver. A part of the energy is absobed by the steering wheel and another part by the collapsable steering column. It is believed that the structure of the steering wheel has an important effect on the injury of the driver. A design criterion is suggested for steering wheels for maximum protection of drivers. Taguchi method is used to obtain the effects design parameters.

  • PDF

Change of Substructure Design with Changed Angle of Skew Bridges (사교의 사각에 따른 하부구조 설계변화)

  • 이주호;염종윤;박경래;배한욱
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.3-12
    • /
    • 1999
  • This study presents a suggestion of regulation of skewed slab bridge. In order to find the characteristic behavior of skew bridge, many cases of skew bridges were analyzed with changed angle of skew. The comparison of design methods for cantilever part in pier was also made. It was found that : (1) The lower the skew angle was, the higher the maximum support reaction forces at the end point were. (2) The higher the ratio of L/B was, the higher the maximum support reaction force at the point was. (3) The effect of skew may be neglected for skew angles of $70^{\circ}$or more. (4) If elastic springs are applied to the boundary conditions to simulate the rubber pad bearings, the results will be more reasonable. (5) The shear deformation effect must be considered in the analysis of cantilever part of substructure. (6) Using strut and tie model to design cantilever part of pier, it will be more simple than finite element method with same accuracy and more accurate than using frame element.

A Study of Deformation Depicted on Moschino's Collection -Focusing on 2006~2010 Year Collection- (모스키노 컬렉션에 표현된 데포르마시옹에 관한 연구 -2006~2010년의 Collection을 중심으로-)

  • Lee, Jee-Yeon;Cho, Jean-Suk
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.3
    • /
    • pp.488-500
    • /
    • 2011
  • [ $D{\'{e}}formation$ ]is one of the most important cultural factor which puts people at ease and gives a sense of security. This study, in the process, analyzes the works of Moschino. Moschino's designs are rated to have approached the sublime when it comes to transforming the psychological anxiety of everyday living into a laughter. After selecting one hundred-two of Moschino's designs from the Internet Web site(www.cft.or.kr, www.samsungdesign.net), this study examines and analyzes the characteristics and types of deformation found in them. The result as follows. The examination of deformation found in Moschino designs can be classified into a transformation, distortion, exaggeration, and illusion. Transformation, a conscious change of the existing form or function, was shown as the change of an existing position, form, function and designation of a new function. Distortion, an interpretation away from the reality or a "wrong interpretation," was shown by placing opposing factors in left-right position as an extreme asymmetry. Exaggeration, always beyond the realm of reality, was shown thorough an enlargement or a magnification of a specific part and a repetition of a detail factors. Illusion, through a distortion of reality results in something that looks new, was expressed through the effects of wearing a two-pieces, an expression of details, effects of wearing accessories, and an expression of a dynamism. Therefore, Moschino has reflected the desire of homo modern to transform the existing situation through many techniques of deformation.

Investigation and Analysis of Ground Deformation at a Coal Waste Depot in Dogye (도계 석탄폐석 적치장 주변지반의 지형변화 조사 및 분석)

  • Cho, Yong-Chan;Song, Young-Suk;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.199-212
    • /
    • 2011
  • To investigate the causes of ground deformation around the Dogye coal waste depot in Samcheok city, Gangwon Province, we undertook a field survey and performed boring tests and a topographic analysis using maps compiled in various years. The results of boring tests and analyses of ground fractures indicate that the thickness of the soil layer ranges from 9 to 28.5 m and that ground deformation has occurred to the $240{\sim}250^{\circ}$ direction. The topographic analysis revealed that the topography of the site has changed continuously due to the dumping of coal waste. The causes of ground deformation, investigated by both field surveys and the topographic analysis, were the thick layer of soil at this site, the loading weight of coal waste, and the excavation at the lower part of the slope.

Evaluation of Analytical Method for Detent Spring Force Correction (디텐트 스프링 교정을 위한 해석적방법의 적용성 평가)

  • Kim, Sun-Ho;Kwon, Hyuk-Hong;Park, Kyoung-Taik;Jung, Yong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.57-63
    • /
    • 1999
  • A thin metal plate such as detent spring has the shape deformation due to the phenomenon of spring back after press machining and heat treatment process. This requires the correction of spring shape and force in final inspection process. To do correction of the shape deformation the impact force is manually applied to the bended part of detent spring after measuring the shape deformation and spring force. To develop the automatic spring force correction system, applied force of occurring plastic deformation must be derived from the experimental method. But frequent change of spring shape and material makes it difficult to accomplish the experimental method to be applied. This paper describes the analytical method for detent spring force correction system is to be substituted for the experimental method. FEM(Finite Element Method) is used to find the boundary value between elastic and plastic deformation in the analytical method. To confirm the validity of the analytical method, the result of two methods is compared each other at various applied force conditions. It shows that the simulation result of the analytical method is consistent with the result of the experimental method within the error bound ${\pm}$5%. The result of this paper is useful for development of the automatic spring correction system and reduction of the complicated and tedious processes involved in experimental method.

  • PDF

Model tests for the inhibition effects of cohesive non-swelling soil layer on expansive soil

  • Lu, Zheng;Tang, Chuxuan;Yao, Hailin;She, Jianbo;Cheng, Ming;Qiu, Yu;Zhao, Yang
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.91-97
    • /
    • 2022
  • The cohesive non-swelling soil (CNS) cushion technology has been widely applied in the subgrade and slope improvement at expansive soil regions. However, the mechanism of the inhibition effect of the CNS layer on expansive soil (ES) has not been fully understood. We performed four outdoor model tests to further understand the inhibition effect, including different kinds of upper layer and thickness, under the unidirectional seepage condition. The swelling deformation, soil pressure, and electrical resistivity were constantly monitored during the saturation process. It is found that when a CNS layer covered the ES layer, the swelling deformation and electrical resistivity of the ES layer decreased significantly, especially the upper part. The inhibition effect of the CNS layer increases with the increase of CNS thickness. The distribution of vertical and lateral soil pressure also changed with the covering of a CNS layer. The electrical resistivity can be an effective index to describe the swelling deformation of ES layer and analyze the inhibition effect of the CNS layer. Overall, the CNS deadweight and the ion migration are the major factors that inhibit the swelling deformation of expansive soil.