• Title/Summary/Keyword: parkinson's disease

Search Result 767, Processing Time 0.027 seconds

Drug-Induced Dyskinesia Outpatient Suspected to be Induced by Risperidone Management with Yigan-san with Citri Pericarpium and Pinelliae Rhizoma (modified Yigan-san, Yokukan-san Kachimpihang), Electro-Acupuncture at GB34 (陽陵泉), and Stopping Suspected Medication: A Case Report (Risperidone으로 유발된 것으로 의심된 약물유발성 이상운동증에 대한 의심약물 중단 및 억간산가진피반하와 GB34(陽陵泉) 전침치료를 통한 외래기반 관리 : 증례보고)

  • Roh, Min-yeong;Jang, Seung-won;Kim, Hyun-ho;Han, Yang-hee;Leem, Jungtae
    • The Journal of Internal Korean Medicine
    • /
    • v.40 no.6
    • /
    • pp.1303-1310
    • /
    • 2019
  • Objectives: Drug-induced Parkinsonism has similar symptoms to Parkinson's disease, but each has different causes. Drug-induced Parkinsonism accounts for the largest proportion of secondary Parkinsonism We report a outpatient case of drug-induced Parkinsonism after taking Risperidone, an atypical antipsychotic. Method: With discontinuing of antipsychotic drug, modified Yigan-san extract was administered for 12 weeks, and acupuncture and electroacupuncture procedures were performed 20 times. Results: Abnormal Involuntary Movement Scale (AIMS) score decreased from 23 to 3 during 59 days of treatment period without adverse events and worsening of depression. The Patient was highly satisfied. Conclusion: Modified Yigan-san and electroacupuncture (GB34) can be used as an treatment option in patients with drug-induced Parkinsonism.

Real time neural stimulations and reading by modulating surface acoustic wave amplitude (SAW의 진폭 모듈화를 통한 실시간 뉴런 자극과 리딩)

  • Yves, Petronil;Park, Jung-keun;Oh, Hoe-joo;Park, Yea-chan;Lee, Kee-keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1243-1244
    • /
    • 2015
  • Finding solutions for the disabled is a major challenge for our society. In the case of a disability due to a malfunction of the nervous system, the origin may be accidental, genetic, or induced by environmental factors. This type of loss can cause loss or movement disorders (paraplegia, hemiplegia, quadriplegia, epilepsy, Parkinson's disease, multiple sclerosis, etc.) or malfunction of certain sensory functions (blindness, deafness, chronic pain, etc.). Many alternatives, more technology, have been imported to create interfaces between the human body and an artificial prosthesis in order to restore some functions of the human body. A wireless system, battery neurons probe was developed for one hand reading neural signals in the brain, and on the other hand also able to excite the neuron in the brain using a surface acoustic wave one ports (SAW) delay line reflection.

  • PDF

Basal Ganglia Motor Circuit and Physiology of Parkinsonism (기저핵 운동회로와 파킨슨 증상의 신경생리)

  • Sohn, Young Ho
    • Annals of Clinical Neurophysiology
    • /
    • v.8 no.2
    • /
    • pp.107-124
    • /
    • 2006
  • The basal ganglia are a group of nuclei located in the deep portion of the brain. Along with the cerebellum, the basal ganglia have a major role in controlling human voluntary movements, and their dysfunction is apparently responsible for various involuntary movements. Although the exact mechanism of how the basal ganglia control movements has yet to be clarified, the model of focused selection (through the direct pathway) and tonic inhibition (via the indirect pathway) is proposed to be a principal functional model of the basal ganglia. Parkinson's disease (PD) is classically characterized by bradykinesia, rigidity and tremor-at-rest. All features seem to be associated with dopamine depletion resulting from the degeneration of the nigrostriatal pathway, which produces reduced activity of the direct pathway and a concurrent enhancement of excitatory output from STN. This change may result in increased tonic background inhibition and reduced focused selection via the direct pathway, causing difficulties in performing voluntary movements selectively. However, it has not been possible to define a single underlying pathophysiologic mechanism that explains all parkinsonian symptoms. Here the data that give separate understanding to each of the three classic features are discussed.

  • PDF

Per-deuteration and NMR experiments for the backbone assignment of 62 kDa protein, Hsp31

  • Kim, Jihong;Choi, Dongwook;Park, Chankyu;Ryu, Kyoung-Seok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.112-118
    • /
    • 2015
  • Hsp31 protein is one of the members of DJ-1 superfamily proteins and has a dimeric structure of which molecular weight (MW) is 62 kDa. The mutation of DJ-1 is closely related to early onset of Parkinson's disease. Hsp31 displays $Zn^{+2}$-binding activity and was first reported to be a holding chaperone in E. coli. Its additional glyoxalase III active has recently been characterized. Moreover, an incubation at $60^{\circ}C$ induces Hsp31 protein to form a high MW oligomer (HMW) in vitro, which accomplishes an elevated holding chaperone activity. The NMR technique is elegant method to probe any local or global structural change of a protein in responses to environmental stresses (heat, pH, and metal). Although the presence of the backbone chemical shifts (bbCSs) is a prerequisite for detailed NMR analyses of the structural changes, general HSQC-based triple resonance experiments could not be used for 62 kDa Hsp31 protein. Here, we prepared the per-deuterated Hsp31 and performed the TROSY-based triple resonance experiments for the bbCSs assignment. Here, detailed processes of per-deuteration and the NMR experiments are described for other similar NMR approaches.

Increased Association of ${\alpha}$-synuclein to Perturbed Cellular Membranes

  • Kim, Yoon-Suk;Lee, Seung-Jae
    • Biomedical Science Letters
    • /
    • v.17 no.2
    • /
    • pp.167-171
    • /
    • 2011
  • [ ${\alpha}$ ]synuclein (${\alpha}$-syn) is implicated in the pathogenesis of Parkinson's disease (PD) and other related diseases. We have previously reported that ${\alpha}$-syn binds to the cell membranes in a transient and reversible manner. However, little is known about the physiologic function and/or consequence of this association. Here, we examined whether chemically induced perturbations to the cellular membranes enhance the binding of ${\alpha}$-syn, based on hypothesis that ${\alpha}$-syn may play a role in maintenance of membrane integrity or repair. We induced membrane perturbations or alterations in ${\alpha}$-syn-overexpressing human neuroblastoma cells (SH-SY5Y) by treating the cells with hydrogen peroxide ($H_2O_2$) or oleic acid. In addition, membranes fractionated from these cells were perturbed by treating them with proteinase K or chloroform. Dynamic interaction of ${\alpha}$-syn to the membranes was analyzed by the chemical cross-linking assay that we developed in the previous study. We found that membrane interaction of ${\alpha}$-syn was increased upon treatment with membrane-perturbing reagents in a dose and time dependent manner. These results suggest that perturbations in the cellular membranes cause increased binding of ${\alpha}$-syn, and this may have significant implication in the physiological function of ${\alpha}$-syn in cells.

Recent Advances in Tyrosinase Research as An Industrial Enzyme (산업용 효소로써 티로시나아제 연구의 최근 동향)

  • Kim, Hyerin;Kim, Hyunmi;Choi, Yoo Seong
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Tyrosinases catalyze the hydroxylation of monophenolic compounds and the conversion of o-diphenols to oquinones. The enzymes are mainly involved in the modification of tyrosine into L-3,4-dihydroxyphenyl-alanine (L-DOPA) and DOPA/DOPAquinone-drived intermolecular cross-linking, which play the key roles of pigmentation to the cells. It is ubiquitously distributed in microorganisms, plants, and animals all around the nature world. They are classified as copper- containing dioxygen activating enzymes; two copper ions are coordinated with six histidine residues in their active sites and they are distinguished as met-, deoxy-, and oxy-form depending on their oxidative states. Natural extraction and recombinant protein approaches have been tried to obtain practical amounts of the enzymes for industrial application. Tyrosinases have been widely applied to industrial and biomedical usages such as detoxification of waste water containing phenolic compounds, L-DOPA as a drug of Parkinson's disease, biomaterials preparation based on the cross-linking ability and biosensors for the detection of phenolic compounds. Therefore, this review reports the mechanism of tyrosinase, biochemical and structural features and potential applications in industrial field.

Electronic Pen-based Unilateral Visual Neglect Assessment and Rehabilitation System (전자펜 기반 편측시각무시(UVN) 환자 검사 및 재활치료 시스템)

  • Kim, Joonkyo;Jee, Haemi;Park, Jaehyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.647-650
    • /
    • 2014
  • Assessment and rehabilitation of patients with unilateral visual neglect has been one of the fields that require assistive technology. Paper-and-pencil tests, including the LBT (Line Bisection Test), have been one of the most commonly used visual neglect assessment methods used in a clinical setting. The key motivation of this study was to establish a computer-based real-time assessment system for the hemi-neglect patients without altering the conventional paper-and-pencil based user tools. A digital penbased assessment and rehabilitation system, the ePen System, could eliminate the manual assessment time while maintaining measurement accuracy. As a result, the proposed system may assist rehabilitation specialists to assess and diagnose patients with unilateral visual neglect. This system can be applied to a range assessment and rehabilitation modalities based on a pen and paper. It can also be applied to various patients such as those with Parkinson's disease, stroke sufferers, or those who have experienced different forms of brain lesions.

Perphenazine and trifluoperazine induce mitochondria-mediated cell death in SH-SY5Y cells

  • Hong, Seok-Heon;Lee, Min-Yeong;Shin, Ki-Soon;Kang, Shin-Jung
    • Animal cells and systems
    • /
    • v.16 no.1
    • /
    • pp.20-26
    • /
    • 2012
  • Drug-induced parkinsonism has been associated with an increased risk for Parkinson's disease. Antipsychotic drugs have long been known to cause parkinsonian symptoms. However, it remains unclear whether antipsychotics can directly damage the nigrostriatal pathway. In the present study, we investigated the toxicity mechanism of two typical antipsychotics, perphenazine and trifluoperazine, in a human dopaminergic cell line, SH-SY5Y. Perphenazine and trifluoperazine induced mitochondrial damage as evidenced by fragmentation of mitochondria, activation of Bax, cytochrome c release and a decrease in cellular ATP level. In addition, activation of caspase-3 and apoptotic nuclei were observed following the drug treatment. However, pan-caspase inhibitor did not suppress the cell death induced by the antipsychotics, suggesting that the initiated apoptosis was possibly shifted to necrosis upon caspase inhibition. Damaged mitochondria may have induced oxidative stress since the drug-induced cell death was partially suppressed by an antioxidant. Taken together, our results suggest that perphenazine and trifluoperazine can induce apoptotic cell death in a dopaminergic cell line via mitochondrial damage accompanied by oxidative stress.

Selective 3,4-Dihydroxyphenylalanine Analysis in Human Urine as Ethoxycarbonyltert-butyldimethylsilyl Derivatives by Gas Chromatography-Mass Spectrometry

  • Paik, Man-Jeong;Nguyen, Duc-Toan;Yoon, Jae-Hwan;Cho, In-Seon;Shim, Woo-Young;Kim, Kyoung-Rae;Cho, Ki-Hong;Choi, Sang-Dun;Lee, Gwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.977-980
    • /
    • 2011
  • A new analytical method for measurement of 3,4-dihydroxyphenylalanine (DOPA) in human urine was developed. DOPA from an aqueous solution was converted into an ethoxycarbonyl (EOC) derivative. A tertbutyldimethylsilyl (TBDMS) reaction under anhydrous conditions was then attempted for analysis by gas chromatography-mass spectrometry in selected ion monitoring mode. A new mass spectral data on DOPA as a tri-EOC/mono-TBDMS derivative was built. This method showed good linearity (r ${\geq}$ 0.999), precision (% relative standard deviation = 3.1-9.2), and accuracy (% relative error = -7.2-8.8), with a detection limit of 0.05 ng/mL. This selective and accurate method of DOPA analysis will be useful for biochemical monitoring of various neurological disorders including Parkinson's disease in biological fluids.

USING THE SPEECH AID FOR TREATMENT OF VELOPHARYNGEAL INCOMPETENCY IN INCOMPLETE CLEFT PALATE - A CASE REPORT - (음성 폐쇄상을 이용한 구개열 환자의 언어치료의 증례 보고 - 장착 후 제거까지의 경과 -)

  • Leem, Dae-Ho;Yoon, Bo-Keun;Baik, Jin-A;Shin, Hyo-Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.483-488
    • /
    • 2006
  • Velopharyngeal function refers to the combined activity of the soft palate and pharynx in closing and opening the velopharyngeal port to the required degree. In normal speech, various muscles of palate & pharynx function as sphincter and occlude the oropharynx from the nasopharynx during the production of oral consonant sounds. Inadequate velopharyngeal function caused by neurologic disorder - cerebral apoplexy, regressive diseases - disseminated sclerosis, Parkinson's disease, congenital deformity - cleft palate, cerebral palsy and etc. may result in abnormal speech characterized by hypernasality, nasal emission and decreased intelligibility of speech due to weak consonant production. In our study, we constructed speech aids prosthesis - Speech bulb in the incomplete cleft palate VPI patient with hypernasality and assessed velopharyngeal function with nasometer which can evaluate the speech characteristics objectively.