Browse > Article
http://dx.doi.org/10.7841/ksbbj.2014.29.1.1

Recent Advances in Tyrosinase Research as An Industrial Enzyme  

Kim, Hyerin (Department of Chemical Engineering, Chungnam National University)
Kim, Hyunmi (Department of Chemical Engineering, Chungnam National University)
Choi, Yoo Seong (Department of Chemical Engineering, Chungnam National University)
Publication Information
KSBB Journal / v.29, no.1, 2014 , pp. 1-8 More about this Journal
Abstract
Tyrosinases catalyze the hydroxylation of monophenolic compounds and the conversion of o-diphenols to oquinones. The enzymes are mainly involved in the modification of tyrosine into L-3,4-dihydroxyphenyl-alanine (L-DOPA) and DOPA/DOPAquinone-drived intermolecular cross-linking, which play the key roles of pigmentation to the cells. It is ubiquitously distributed in microorganisms, plants, and animals all around the nature world. They are classified as copper- containing dioxygen activating enzymes; two copper ions are coordinated with six histidine residues in their active sites and they are distinguished as met-, deoxy-, and oxy-form depending on their oxidative states. Natural extraction and recombinant protein approaches have been tried to obtain practical amounts of the enzymes for industrial application. Tyrosinases have been widely applied to industrial and biomedical usages such as detoxification of waste water containing phenolic compounds, L-DOPA as a drug of Parkinson's disease, biomaterials preparation based on the cross-linking ability and biosensors for the detection of phenolic compounds. Therefore, this review reports the mechanism of tyrosinase, biochemical and structural features and potential applications in industrial field.
Keywords
Enzyme; Tyrosinase; Monophenolase; Diphenolase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Pawelek, J. M. and A. M. Korner (1982) The biosynthesis of mammalian melanin. Am. Sci. 70: 136-145.
2 Fairhead, M. and L. Thony-Meyer (2012) Bacterial tyrosinases: Old enzymes with new relevance to biotechnology. Nat. Biotechnol. 29: 183-191.
3 Solomon, E. I., U. M. Sundaram, and T. E. Machonkin (1996) Multicopper oxidases and oxygenases. Chem. Rev. 96: 2563-2606.   DOI   ScienceOn
4 Geng, J., S. B. Yu, X. Wan, X. J. Wang, P. Shen, P. Zhou, and X. D. Chen (2008) Protective action of bacterial melanin against DNA damage in full UV spectrums by a sensitive plasmid-based noncellular system. J. Biochem. Biophys. Methods. 70: 1151-1155.   DOI
5 Garcia-Rivera, J., and A. Casadevall (2001) Melanization of cryptococcus neoformans reduces its susceptibility to the antimicrobial effects of silver nitrate. Med. Mycol. 39: 353-357.   DOI
6 Van Gelder, C. W., W. H. Flurkey, and H. J. Wichers (1997) Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45: 1309-1323.   DOI   ScienceOn
7 Prota, G. (1980) Recent advances in the chemistry of melanogenesis in mammals. J. Invest. Dermatol. 75: 122-127.   DOI   ScienceOn
8 Garcia-Borron, J. C. and F. Solano (2002) Molecular anatomy of tyrosinase and its related proteins: Beyond the histidine-bound metal catalytic center. Pigment Cell. Res. 15: 162-173.   DOI   ScienceOn
9 Streffer, K., E. Vijgenboom, A. W. J. W. Tepper, A. Makower, F. W. Scheller, G. W. Canters, and U. Wollenberger (2001) Determination of phenolic compounds using recombinant tyrosinase from Streptomyces antibioticus. Anal. Chim. Acta. 427: 201-210.   DOI
10 Lerch, K. and L. Ettinger (1972) Purification and characterization of a tyrosinase from Streptomyces glaucescens. Eur. J. Biochem. 31: 427-437.   DOI   ScienceOn
11 Pinero, S., J. Rivera, D. Romero, M. A. Cevallos, A. Martinez, F. Bolivar, and G. Gosset (2007) Tyrosinase from Rhizobium etli is involved in nodulation efficiency and symbiosis-associated stress resistance. J. Mol. Microbiol. Biotechnol. 13: 35-44.   DOI
12 Lewandowski, A. T., D. A. Small, T. Chen, G. F. Payne, and W. E. Bentley (2006) Tyrosine-based "activatable pro-tag": Enzyme-catalyzed protein capture and release. Biotechnol. Bioeng. 93: 1207-1215.   DOI
13 Claus, H., and H. Decker (2006) Bacterial tyrosinases. Syst. Appl. Microbiol. 29: 3-14.   DOI   ScienceOn
14 Likhitwitayawuid, K. (2008) Stilbenes with tyrosinase inhibitory activity. Curr. Sci. India 94: 44-52.
15 Kohashi, P. Y., T. Kumagai, Y. Matoba, A. Yamamoto, M. Maruyama, and M. Sugiyama (2004) An efficient method for the overexpression and purification of active tyrosinase from Streptomyces castaneoglobisporus. Protein Expres. Purif. 34: 202-207.   DOI
16 Faccio, G., K. Kruus, M. Saloheimo, and L. Thony-Meyer (2012) Bacterial tyrosinases and their applications. Process Biochem. 47: 1749-1760.   DOI
17 Chang, T. S. (2009) An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 10: 2440-2475.   DOI   ScienceOn
18 Yang, H. Y., and C. W. Chen (2009) Extracellular and intracellular polyphenol oxidases cause opposite effects on sensitivity of Streptomyces to phenolics: A case of double-edged sword. PLoS One. 4: e7462.   DOI
19 Kong, K. H., M. P. Hong, S. S. Choi, Y. T. Kim, and S. H. Cho (2000) Purification and characterization of a highly stable tyrosinase from Thermomicrobium roseum. Biotechnol. Appl. Bioc. 31: 113-118.   DOI   ScienceOn
20 Shuster, V., and A. Fishman (2009) Isolation, cloning and characterization of a tyrosinase with improved activity in organic solvents from Bacillus megaterium. J. Mol. Microb. Biotech. 17: 188-200.   DOI
21 Betancourt, A. M., V. Bernan, W. Herber, and E. Katz (1992) Analysis of tyrosinase synthesis in Streptomyces antibioticus. J. Gen. Microbiol. 138: 787-794.   DOI
22 Sendovski, M., M. Kanteev, V. S. Ben-Yosef, N. Adir, and A. Fishman (2010) Crystallization and preliminary X-ray crystallographic analysis of a bacterial tyrosinase from Bacillus megaterium. Acta Crystallogr, F. 66: 1101-1103.   DOI
23 De Faria, R. O., V. R. Moure, M. A. L. D. Amazonas, N. Krieger, and D. A. Mitchell (2007) The biotechnological potential of mushroom tyrosinases. Food Technol. Biotech. 45: 287-294.
24 Fairhead, M., and L. Thony-Meyer (2010) Role of the C-terminal extension in a bacterial tyrosinase. FEBS J. 277: 2083-2095.   DOI
25 Liu, N., T. Zhang, Y. J. Wang, Y. P. Huang, J. H. Ou, and P. Shen (2004) A heat inducible tyrosinase with distinct properties from Bacillus thuringiensis. Lett. Appl. Microbiol. 39: 407-412.   DOI
26 Sanchez-Amat, A., P. Lucas-Elio, E. Fernandez, J. C. Garcia-Borron, and F. Solano (2001) Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim. Biophia. Acat. 1547: 104-116.   DOI
27 Sakurai, T., and K. Kataoka (2007) Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem. Rec. 7: 220-229.   DOI
28 Matoba, Y., T. Kumagai, A. Yamamoto, H. Yoshitsu, and M. Sugiyama (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J. Biol. Chem. 281: 8981-8990.   DOI   ScienceOn
29 Matoba, Y., N. Bando, K. Oda, M. Noda, F. Higashikawa, T. Kumagai, and M. Suqiyama (2011) A molecular mechanism for copper transportation to tyrosinase that is assisted by a metallochaperone, caddie protein. J. Biol. Chem. 286: 30219-30231.   DOI
30 Selinheimo, E., M. Saloheimo, E. Ahola, A. Westerholm-Parvinen, N. Kalkkinen, J. Buchert, and K. Kruus (2006) Production and characterization of a secreted, C-terminally processed tyrosinase from the filamentous fungus Trichoderma reesei. FEBS J. 273: 4322-4335.   DOI   ScienceOn
31 Tuncagil, S., S. K. Kayahan, G. Bayramoglu, M. Y. Arica, and L. Toppare (2009) L-Dopa synthesis using tyrosinase immobilized on magnetic beads. J. Mol. Catal. B - Enzym. 58: 187-193.   DOI   ScienceOn
32 Dolashki, A., A. Gushterova, W. Voelter, and B. Tchorbanov (2009) Purification and characterization of tyrosinases from Streptomyces albus. Z. Naturforsch C. 64: 724-732.
33 Bubacco, L., E. Vijgenboom, C. Gobin, A. W. J. W. Tepper, J. Salgado, and G. W. Canters (2000) Kinetic and paramagnetic NMR investigations of the inhibition of Streptomyces antibioticus tyrosinase. J. Mol. Catal. B. - Enzym. 8: 27-35.   DOI
34 Ito, M, and K. Inouye (2005) Catalytic properties of an organic solvent-resistant tyrosinase from Streptomyces sp REN-21 and its high-level production in E. coli. J. Biochem. 138: 355-362.   DOI
35 Plonka, P. M. and M. Grabacka (2006) Melanin synthesis in microorganisms - biotechnological and medical aspects. Acta Biochim. Pol. 53: 429-443.
36 Menter, J. M., and I. Willis (1997) Electron transfer and photoprotective properties of melanins in solution. Pigm. Cell Res. 10: 214-217.   DOI
37 Tsujino, Y., Y. Yokoo, and K. Sakato (1991) Hair coloring and waiving using oxidases. J. Soc. Cosmet. Chem. 42: 273-282.
38 Pialis, P. and B. A. Saville (1998) Production of L-DOPA from tyrosinase immobilized on nylon 6,6: enzyme stability and scaleup. Enzyme Microb. Tech. 22: 261-268.   DOI   ScienceOn
39 Pandey, G., C. Muralikrishna, and U. T. Bhalerao (1989) Mushroom tyrosinase catalyzed synthesis of coumestans, benzofuran derivatives and related heterocyclic-compounds. Tetrahedron. 45: 6867-6874.   DOI
40 Chen, T. H., R. Vazquez-Duhalt, C. F. Wu, W. E. Bentley, and G. F. Payne (2001) Combinatorial screening for enzyme-mediated coupling. Tyrosinase-catalyzed coupling to create protein-chitosan conjugates. Biomacromolecules 2: 456-462.   DOI   ScienceOn
41 Anghileri, A., R. Lantto, K. Kruus, C. Arosio, and G. Freddi (2007) Tyrosinase-catalyzed grafting of sericin peptides onto chitosan and production of protein-polysaccharide bioconjugates. J. Biotechnol. 127: 508-519.   DOI   ScienceOn
42 Kang, G. D., K. H. Lee, C. S. Ki, J. H. Nahm, and Y. H. Park (2004) Silk fibroin/chitosan conjugate crosslinked by tyrosinase. Macromol. Res. 12: 534-539.   과학기술학회마을   DOI
43 Jus, S., V. Kokol, and G. M. Guebitz (2009) Tyrosinase-catalysed coating of wool fibres with different protein-based biomaterials. J. Biomat. Sci. Polym. E. 20: 253-269.   DOI
44 Freddi, G., A. Anghileri, S. Sampaio, J. Buchert, P. Monti, and P. Taddei (2006) Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: Grafting of chitosan under heterogeneous reaction conditions. J. Biotechnol. 125: 281-294.   DOI   ScienceOn
45 Girelli, A. M, T. Giuliani, E. Mattei, and D. Papaleo (2009) Determination of an antioxidant capacity index by immobilized tyrosinase bioreactor. J. Agr. Food Chem. 57: 5178-5186.   DOI
46 Tatsuma, T., K. Komori, H. H. Yeoh, and N. Oyama (2000) Disposable test plates with tyrosinase and beta-glucosidases for cyanide and cyanogenic glycosides. Anal. Chim. Acta. 408: 233-240.   DOI
47 Saratale, R. G., G. D. Saratale, J. S. Chang, and S. P. Govindwar (2011) Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng. 42: 138-157.   DOI   ScienceOn
48 Ismaya, W. T., H. J. Rozeboom, A. Weijn, J. J. Mes, F. Fusetti, H. J. Wichers, and B. W. Bijkstra (2011) Crystal structure of agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 50: 5477-5486.   DOI   ScienceOn
49 Duran, N. and E. Esposito (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review. Appl. Catal. B - Environ. 28: 83-99.   DOI   ScienceOn
50 Rosenzweig, A. C. and M. H. Sazinsky (2006) Structural insights into dioxygen-activating copper enzymes. Curr. Opin. Struc. Biol. 16: 729-735.   DOI
51 Choi, Y. S., D. G. Kang, S. Lim, Y. J. Yang, C. S. Kim, and H. J. Cha (2011) Recombinant mussel adhesive protein fp-5 (MAP fp5) as a bulk bioadhesive and surface coating material. Biofouling. 27: 729-737.   DOI
52 Flurkey, W. H., and J. K. Inlow (2008) Proteolytic processing of polyphenol oxidase from plants and fungi. J. Inorg. Biochem. 102: 2160-2170.   DOI   ScienceOn
53 Michalik, J., W. Emilianowicz-Czerska, L. Switalski, and K. Raczynska- Bojanowska (1975) Monophenol monooxygenase and lincomysin biosynthesis in Streptomyces lincolnensis. Antimicrob. Agents Chemother. 8: 526-531.   DOI
54 Halaouli, S., M. Asther, K. Kruus, L. Guo, M. Hamdi, J. C. Sigoillot, M. Asther, and A. Lomascolo (2005) Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J. Appl. Microbiol. 98: 332-343.   DOI   ScienceOn