• Title/Summary/Keyword: parking position

Search Result 62, Processing Time 0.022 seconds

Implementation for precisely localizing and parking of Bimodal Tram (바이모달 트램의 위치 인식 방법 및 정밀 정차 구현)

  • Seo, Ki-Won;Park, Ju-Yeon;Lee, Sang-Nam;Ryu, Hee-Moon;Byun, Yeun-Sub
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.452-456
    • /
    • 2009
  • This paper presents a method for precisely localizing and parking of bimodal trams. In order to gam an automatically driving system for bimodal trams, precise up-to-date localization, velocity recognition, distance to next station and precise parking location estimation functions are required. This paper proposes a system consisting of control device, steering device, sensor input equipment, driving system, tachometer, vehicle-side sensors, magnetic markers and magnetic sensors. The tram recognizes the precise location via magnetic markers containing information. Parking position and precise distance calculation is embodied by a tachometer. The vehicle-side sensors are used to assure safe station approaching and parking magnetic markers provide improvement of precision while tram parking. This paper provides a system realizing localization and precise parking and afterwards the automatic drive test results are reported and analyzed.

  • PDF

Car Collision Verification System for the Ubiquitous Parking Management (유비쿼터스 주차관리를 위한 차량충돌 검증시스템)

  • Mateo, Romeo Mark A.;Yang, Hyun-Ho;Lee, Jae-Wan
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.101-111
    • /
    • 2011
  • Most researches in WSN-based parking management system used wireless sensors to monitor the events in a car parking area. However, the problem of car collisions in car parks was not discussed by previous researches. The car position details over time are vital in analyzing a collision event. This paper proposes a collision verification method to detect and to analyze the collision event in the parking area, and then notifies car owners. The detection uses the information from motion sensors for comprehensive details of position and direction of a moving car, and the verification processes an object tracking technique with a fast OBB intersection test. The performance tests show that the location technique is more accurate with additional sensors and the OBB collision test is faster compared to a normal OBB intersection test.

3D VISION SYSTEM FOR THE RECOGNITION OF FREE PARKING SITE LOCATION

  • Jung, H.G.;Kim, D.S.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.361-367
    • /
    • 2006
  • This paper describes a novel stereo vision based localization of free parking site, which recognizes the target position of automatic parking system. Pixel structure classification and feature based stereo matching extract the 3D information of parking site in real time. The pixel structure represents intensity configuration around a pixel and the feature based stereo matching uses step-by-step investigation strategy to reduce computational load. This paper considers only parking site divided by marking, which is generally drawn according to relevant standards. Parking site marking is separated by plane surface constraint and is transformed into bird's eye view, on which template matching is performed to determine the location of parking site. Obstacle depth map, which is generated from the disparity of adjacent vehicles, can be used as the guideline of template matching by limiting search range and orientation. Proposed method using both the obstacle depth map and the bird's eye view of parking site marking increases operation speed and robustness to visual noise by effectively limiting search range.

A design of a parking lot management system to a small position information (소규모 위치 정보를 갖는 주차장 관리시스템의 설계)

  • Lee, Chang-Hee;Lee, Jong-Yong;Won, Young-Jin;Lee, Woo-Sang
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.60-64
    • /
    • 2006
  • This system constructs system devoted to what supplement that I follow at an installation interval of attribute quotient repeater of a thing devoted wireless communication device gaining position information, and range of information is limited. A parking lot management system constructed a database of parking information, and the database information was planned so that there was the number of to easily offer client and an Administrator. There is a sensor in several to perceive a vehicle about adhesion in a radio communication device installed in a parking lot and covers, and hits data after parking to a server and transmits base information. The Administrator program that I verified an information treatment of the server parking management database that I did wireless hand phone emulator J2MEWTK with client and verified working together of a server, and was understood by a transfer of, parking information, and was devoted to a, server and an Administrator offered the menu screen which was easy for a user convenience and management.

Parking Lot Occupancy Detection using Deep Learning and Fisheye Camera for AIoT System

  • To Xuan Dung;Seongwon Cho
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.24-35
    • /
    • 2024
  • The combination of Artificial Intelligence and the Internet of Things (AIoT) has gained significant popularity. Deep neural networks (DNNs) have demonstrated remarkable success in various applications. However, deploying complex AI models on embedded boards can pose challenges due to computational limitations and model complexity. This paper presents an AIoT-based system for smart parking lots using edge devices. Our approach involves developing a detection model and a decision tree for occupancy status classification. Specifically, we utilize YOLOv5 for car license plate (LP) detection by verifying the position of the license plate within the parking space.

Comer Detection of Parking Lot Using Multiple Echo Ultrasonic (초음파의 멀티 에코 기능을 이용한 주차 공간의 코너 감지법)

  • Kim, Byung-Sung;Park, Wan-Joo;Seo, Dong-Eun;Lee, Kwae-Hi;Kim, Dong-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.66-73
    • /
    • 2008
  • In this paper, ultrasonic range system which detects parking lot in parking area is studied. The important part for detecting parking lot accurately is to detect the first and second corners of possible parking lot, and for that, new method using multiple echo function is introduced in this paper. Many probabilistic methods have been used to reduce uncertainties of ultrasonic sensor for distance and location of objects. Method using multiple echo, however, gives accurates results as well as simple algorithm. For experiments in parking space, ultrasonic range system was attached to a Pioneer AT-2 and final parking space map was created in a fusion with position information from wheels of a Pioneer AT-2. We will show the results are compared with error of another methods.

Smart Vehicle Parking Management System using Image Processing

  • Waqas, Maria;Iftikhar, Umar;Safwan, Muhammad;Abidin, Zain Ul;Saud, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.161-166
    • /
    • 2021
  • The term parking management system usually refers to the custom built hardware intensive systems installed in building and malls. However, there are many places where such expensive solutions cannot be installed due to various reasons, like cost and urgent/temporary setup requirements. This project focuses on developing a parking management system based on image processing to detect vacant parking slot in an area where automated systems are not installed. Camera images of the parking area are subjected to image processing algorithm which marks virtual slots in the area and extracts occupancy information to guide the incoming drivers about availability and position of vacant spaces. The application consists of two interfaces: one for the guidance of the incoming drivers and the other one for the administrator. The later interface also informs the administrator if a car is not parked properly in the virtual slot. This parking system would reduce the stress and time wastage associated with car parking and would make the management of such areas less costly.

A study on the design of a parking guidance using ATmega8535 (ATmega8535를 이용한 주차 유도 시스템)

  • Kim, Min-Gu;Gu, Tae-Hoi;Kim, Young-Min;Kim, Han-Seob;Shim, Saero-Eol;Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.77
    • /
    • pp.67-72
    • /
    • 2007
  • ATMega8535 Controller is the ideal solution for use as a standard controller in many applications. The small compact size combined with easy program updates and modifications, make it ideal for use in machinery and control systems, such as alarms, card readers, real-time monitoring applications and much more. This board is ideal as the brains of your robot or at the center of your home-monitoring system. Today, most drivers must use a parking place day by day. Therefore we make time shorten. Using above-mentioned ATmega8535, a sensor of infrared rays, led and lcd, we will make a parking system which is able to display parking situation and lead a car at the best position of Parking easily and quickly. Trying this project, we will be more closer to practical application of electronic engineering bit by bit.

Path Planning for Parking using Multi-dimensional Path Grid Map (다차원 경로격자지도를 이용한 주차 경로계획 알고리즘)

  • Choi, Jong-An;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.152-160
    • /
    • 2017
  • Recent studies on automatic parking have actively adopted the technology developed for mobile robots. Among them, the path planning scheme plans a route for a vehicle to reach a target parking position while satisfying the kinematic constraints of the vehicle. However, previous methods require a large amount of computation and/or cannot be easily applied to different environmental conditions. Therefore, there is a need for a path planning scheme that is fast, efficient, and versatile. In this study, we use a multi-dimensional path grid map to solve the above problem. This multi-dimensional path grid map contains a route which has taken a vehicle's kinematic constraints into account; it can be used with the $A^*$ algorithm to plan an efficient path. The proposed method was verified using Prescan which is a simulation program based on MATLAB. It is shown that the proposed scheme can successfully be applied to both parallel and vertical parking in an efficient manner.

A kinect-based parking assistance system

  • Bellone, Mauro;Pascali, Luca;Reina, Giulio
    • Advances in robotics research
    • /
    • v.1 no.2
    • /
    • pp.127-140
    • /
    • 2014
  • This work presents an IR-based system for parking assistance and obstacle detection in the automotive field that employs the Microsoft Kinect camera for fast 3D point cloud reconstruction. In contrast to previous research that attempts to explicitly identify obstacles, the proposed system aims to detect "reachable regions" of the environment, i.e., those regions where the vehicle can drive to from its current position. A user-friendly 2D traversability grid of cells is generated and used as a visual aid for parking assistance. Given a raw 3D point cloud, first each point is mapped into individual cells, then, the elevation information is used within a graph-based algorithm to label a given cell as traversable or non-traversable. Following this rationale, positive and negative obstacles, as well as unknown regions can be implicitly detected. Additionally, no flat-world assumption is required. Experimental results, obtained from the system in typical parking scenarios, are presented showing its effectiveness for scene interpretation and detection of several types of obstacle.