• Title/Summary/Keyword: parasitic radiator

Search Result 25, Processing Time 0.017 seconds

DUAL BAND SLOT COUPLED MULTIPLE PATCH ANTENNA WITH BROAD BANDWIDTH AND HIGH DIRECTIVITY FOR WIRELESS ACCESS POINT (무선 액세스 포인트용 광대역의 고지향성 이중대역 슬롯 결합 다중 패치안테나)

  • Yeom, Insu;Kang, Seonghun;Jung, Changwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3074-3078
    • /
    • 2014
  • We implemented a dual-band slot-coupled patch (SCP) antenna for the external access point (AP) of the wireless local area network (WLAN) band. The antennas consist of two radiators on three layers. The first radiator is a slotted bow tie antenna operating at the 2.4-2.483 GHz band. The second radiator is a patch antenna with parasitic elements operating at 4.095-5.845 GHz. The high gain and broad bandwidth is important element of wireless access. To enhance the bandwidth, a coupled feeding was used in the first radiator and a parasitic patch was used in the second radiator. We used a parasitic patch and chock to improve the directivity and isolation in both radiators. The porposed antenna was designed by EM simulation tool and measured. The S11 of the antenna was less than -11dB (VSWR 1.8:1) at operating frequency. The peak gain was more than 6 dBi in the first antenna and more than 8 dBi in the second antenna.

ESPAR(Electronically Steerable Parasitic Array Radiator) Antenna Composed of Uniplanar Yagi Dipole and Two Parasitic Dipoles (단일면 야기 다이폴과 두 기생 다이폴로 구성된 전자 빔 조향 기생 배열 안테나)

  • Ju, Sang-Ho;Choi, Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1410-1415
    • /
    • 2008
  • This paper proposes an small electronically steerable parasitic array radiator composed of a uniplanar dipole as a feeding element and two dipoles as parasitic elements. The fabricated antenna shows by measurement the $3.3{\sim}4.3\;dB$ gain between $-100{\sim}1000$ azimuth range in the dipole vertical plane and -10 dB return loss within $5.4{\sim}5.9\;GHz$, which includes $5.725{\sim}5.825\;GHz$ UNII band.

Small ESPAR Antenna with 180 Degree Azimuth Beam Coverage (180도 방위 빔 커버리지 특성을 갖는 UNII대역 소형 전자 빔 조향 기생 배열 안테나)

  • Choi, Ik-Guen;Ju, Sang-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.11-16
    • /
    • 2010
  • In this papar, we have proposed a small electronically steerable parasitic array radiator with 180 degree azimuth beam coverage and high gain characteristics. The proposed antenna is composed of a uniplanar Yagi dipole as a feeding element and two dipoles as parasitic elements. The fabricated antenna is tested by electronically changing the reactance loaded on the parasitic dipoles and the results show that it has 5.2dB~6.7dB gain in $-90^{\circ}{\sim}90^{\circ}$wide azimuth range and -10dB return loss characteristics within 5.725GHz~5.825GHz UNII band.

Design of SPA Antenna Using FET Switch for 2.6 GHz (FET 스위치를 이용한 2.6 GHz 용 SPA 안테나 설계)

  • Kang, Hyun-Sang;Park, Young-Il;Yong, Hwan-Gu;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1137-1144
    • /
    • 2012
  • In this paper, a 2.6 GHz switched parasitic array(SPA) antenna is designed to resolve the device interference in the femtocell. The designed SPA antenna structure consists of a central ${\lambda}/4$ monopole antenna as a radiator and surrounding four parasitic elements operating as a reflector or a director depending on the switching state. In addition, open state monopoles around the parasitic elements are placed to improve the directivity. The designed antenna utilizes RF FETs as switching elements instead of conventional PIN diodes, which enables beam steering with a simple structure consuming low power. To select the proper FET switch, the performance of the SPA antenna depending on the switch characteristics is analyzed. The fabricated antenna has 65 mm radius and 35 mm height, which shows about 15 dB front-back-ratio(FBR) at 2.6 GHz and enables eight-directional beam steering.

Design and Analysis of High Gain Beamforming Patch ESPAR Antenna for Railroad Wireless Communication (철도 무선통신을 위한 단일 RF 체인을 사용하는 고이득 빔포밍 패치 ESPAR 안테나 설계 및 분석)

  • Choi, Jinkyu;Jang, Kukhan;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.710-717
    • /
    • 2015
  • In this paper, we design an array antenna structure based on a patch ESPAR(Electronically Steerable Parasitic Array Radiator) antenna with three elements for reliable communication in high-speed railway wireless communication. The ESPAR antenna consists of the active element with a single RF-chain and the parasitic elements surrounding an active element. The ESPAR antenna is capable of beamforming by adjusting the reactance of the parasitic element. We propose a vertical array antenna structure based on the patch ESPAR antenna and simulate it according to the change of the number of antennas and the distance between antenna rows. The simulation results show that we can get the maximum beam gain and highest directivity when the distance between antenna rows is ${\lambda}$.

OFDM Transmission Method Based on the Beam-Space MIMO System (빔공간 MIMO 시스템에 기반한 OFDM 전송방법)

  • Choi, Jinkyu;An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.425-431
    • /
    • 2015
  • Beamspace Multiple-Input Multiple Output(MIMO) system can transmit multiple data by using Electronically Steerable Parasitic Array Radiator(ESPAR) antenna which has single Radio Frequency(RF)-chain. Beamspace MIMO system can reduce complexity of the system and size of antenna in comparison with the conventional MIMO system because of characteristic of ESPAR antenna using the single antenna and the RF-chain. Heretofore, only the research of transmitting single-carrier has been conducted by the use of beamspace MIMO system. Therefore, in this paper, we propose beamspace MIMO system based on Orthogonal Frequency Division Multiplexing(OFDM) for transmitting the multi-carrier and analysis the performance of this system. We find a proper reactance value which has good performance because proposed system changes the performance by the reactance values of parasitic elements. and we confirm that performance of the proposed system is similar to conventional MIMO system based on OFDM.

A Compact Triple Band Antenna for a Wireless USB Dongle

  • Lee, Seung-Hyun;Sung, Young-Je
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.185-188
    • /
    • 2012
  • A compact monopole antenna possessing triple resonance ($f_1$, $f_2$, $f_3$) characteristics for (USB) dongle applications is presented. The resonance characteristic $f_1$ is determined by the overall length of the antenna. The monopole antenna acts as the main radiator for $f_3$ as well as the coupling feeding structure for the parasitic resonators in $f_1$, $f_2$. The resonance characteristic $f_2$ is achieved by a combination of the capacitance formed by the coupling between the top and bottom parasitic substrate resonators and the inductance generated by a via bridging the two parasitic resonators.

Chaos QPSK Modulated Beamspace MIMO System Using ESPAR Antenna (ESPAR 안테나를 사용하는 카오스 QPSK 변조 빔 공간 MIMO 시스템)

  • Lee, Jun-Hyun;Bok, Jun-Yeong;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.2
    • /
    • pp.77-85
    • /
    • 2014
  • Recently, utilization of MIMO(Multi-Input Multi-Output) system using array antennas is evaluated significantly according to the extension of high-capacity and high-speed communication services. However, MIMO system has disadvantages such as high-complexity and high-power-consumption, because RF(Radio Frequency) chain is required as antenna number, and several array antenna is used in conventional MIMO system. In order to solve these problems, research about beamspace MIMO system using ESPAR(Electronically Steerable Parasitic Array Radiator) antenna that has single RF chain by using one active antenna and several parasitic elements has been studied actively. Beamspace MIMO system using ESPAR antenna is possible to solve the problems of conventional MIMO system, because this system is composed by single RF chain. In this paper, in order to improve the system security, chaos communication algorithm that has characteristics such as non-periodic, non-predictability, easy implementation and initial condition is applied to QPSK (Quadrature Phase Shift Keying) modulated beamspace MIMO system. We design the chaos QPSK modulated beamspace MIMO system, and evaluate SER performance of this system.

Design and Evaluation of Higher Level Modulation in Beam Space MIMO Communication System (빔 공간 MIMO 통신시스템에서 고레벨 변조 설계와 평가)

  • Kim, Bong-Jun;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.220-228
    • /
    • 2014
  • ESPAR(Electronically Steerable Parasitic Array Radiator) antenna is the technique for overcoming the problems of space limitation and energy efficiency due to the multiple RF-chain. Conventional MIMO system with multiple antenna requires a large number of RF-chain for transmitting the multiple data because it transmits the data in proportion to the number of antenna. Beamspace MIMO system using the ESPAR antenna which has single RF-chain was proposed for solving the problems caused by using the multiple antenna and RF-chain. In this paper, therefore we propose 2x2 beamspace MIMO system using the 16, 64-QAM modulation and evaluate the performance of this system to reveal that it is possible that beamspace MIMO system can use not only PSK modulation but also QAM modulation. We confirm that QAM symbol can be generated by adjusting reactance of parasitic elements and making reactance set and also we confirm that performance of beamspace MIMO system is similar to the conventional MIMO system by transmitting the QAM symbol made by reactance set through the simulation.

Design of GPS Antenna with Electromagnetically Coupled Slot Radiator(ECSR) for Mobile Handset Applications (전자기적 결합된 슬롯 방사체를 이용한 휴대단말기용 GPS 안테나 설계)

  • Jung, Kang-Jae;Lee, Byung-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.603-607
    • /
    • 2009
  • In this paper, a GPS antenna is designed by using metal film which can be attached on the case of battery without additional space for antenna in GPS band operation. The proposed metal film has a half-wavelength slot radiator. The slot radiator is fed by th electromagnetic field coupled from the GSM850/PCS band antenna. The proposed GPS antenna obtains about 20 MHz bandwidth(VSWR<3) which can cover entire GPS band. The antenna has an average gain of -3.8 dBi.