• Title/Summary/Keyword: parametric space

Search Result 384, Processing Time 0.03 seconds

DEMO: Deep MR Parametric Mapping with Unsupervised Multi-Tasking Framework

  • Cheng, Jing;Liu, Yuanyuan;Zhu, Yanjie;Liang, Dong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.300-312
    • /
    • 2021
  • Compressed sensing (CS) has been investigated in magnetic resonance (MR) parametric mapping to reduce scan time. However, the relatively long reconstruction time restricts its widespread applications in the clinic. Recently, deep learning-based methods have shown great potential in accelerating reconstruction time and improving imaging quality in fast MR imaging, although their adaptation to parametric mapping is still in an early stage. In this paper, we proposed a novel deep learning-based framework DEMO for fast and robust MR parametric mapping. Different from current deep learning-based methods, DEMO trains the network in an unsupervised way, which is more practical given that it is difficult to acquire large fully sampled training data of parametric-weighted images. Specifically, a CS-based loss function is used in DEMO to avoid the necessity of using fully sampled k-space data as the label, thus making it an unsupervised learning approach. DEMO reconstructs parametric weighted images and generates a parametric map simultaneously by unrolling an interaction approach in conventional fast MR parametric mapping, which enables multi-tasking learning. Experimental results showed promising performance of the proposed DEMO framework in quantitative MR T1ρ mapping.

Parametric Study on the Design of Hybrid Motor for Air Launch System (공중발사체를 위한 하이브리드 모터 설계)

  • Gwon, Sun Tak;Lee, Chang Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.72-78
    • /
    • 2003
  • In this paper, the feasibility study and the parametric design of hybrid motor with HTPB/LOX were conducted for micro air launch system. Design results were compared with 1st stage of Pegasus XL for verification of hybrid motor. Results showed that hybrid motor replace solid booster if Isp of hybrid motor reaches 330sec. In addition, mission analysis was established for micro air launch system, and parametric design was conducted with design variables: number of port, initial oxidizer flux, and chamber pressure. And the region of Isp was identified by parametric study which satisfied design constraints and mission analysis.

Development of a Physics-Based Design Framework for Aircraft Design using Parametric Modeling

  • Hong, Danbi;Park, Kook Jin;Kim, Seung Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.370-379
    • /
    • 2015
  • Handling constantly evolving configurations of aircraft can be inefficient and frustrating to design engineers, especially true in the early design phase when many design parameters are changeable throughout trade-off studies. In this paper, a physics-based design framework using parametric modeling is introduced, which is designated as DIAMOND/AIRCRAFT and developed for structural design of transport aircraft in the conceptual and preliminary design phase. DIAMOND/AIRCRAFT can relieve the burden of labor-intensive and time-consuming configuration changes with powerful parametric modeling techniques that can manipulate ever-changing geometric parameters for external layout of design alternatives. Furthermore, the design framework is capable of generating FE model in an automated fashion based on the internal structural layout, basically a set of design parameters describing the structural members in terms of their physical properties such as location, spacing and quantities. The design framework performs structural sizing using the FE model including both primary and secondary structural levels. This physics-based approach improves the accuracy of weight estimation significantly as compared with empirical methods. In this study, combining a physics-based model with parameter modeling techniques delivers a high-fidelity design framework, remarkably expediting otherwise slow and tedious design process of the early design phase.

ON THE LOWER SEMICONTINUITY OF THE SOLUTION SETS FOR PARAMETRIC GENERALIZED VECTOR MIXED QUASIVARIATIONAL INEQUALITY PROBLEMS

  • HUNG, NGUYEN VAN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1777-1795
    • /
    • 2015
  • In this paper, we establish sufficient conditions for the solution set of parametric generalized vector mixed quasivariational inequality problem to have the semicontinuities such as the inner-openness, lower semicontinuity and Hausdorff lower semicontinuity. Moreover, a key assumption is introduced by virtue of a parametric gap function by using a nonlinear scalarization function. Then, by using the key assumption, we establish condition ($H_h$(${\gamma}_0$, ${\lambda}_0$, ${\mu}_0$)) is a sufficient and necessary condition for the Hausdorff lower semicontinuity, continuity and Hausdorff continuity of the solution set for this problem in Hausdorff topological vector spaces with the objective space being infinite dimensional. The results presented in this paper are different and extend from some main results in the literature.

Motion Sensing Algorithm for SAR Image Using Pre-Parametric Error Modeling (매개변수 사전 오차 모델링 기법을 이용한 SAR 요동측정 알고리즘)

  • Park, Woo Jung;Park, Yong-gonjong;Lee, Soojeong;Park, Chan Gook;Song, Jong-Hwa;Bae, Chang Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.566-573
    • /
    • 2019
  • In order to obtain high-quality images by motion compensation in the airborne synthetic aperture radar (SAR), accurate motion sensing in image acquisition section is necessary. Especially, reducing relative position error and discontinuity in motion sensing is important. To overcome the problem, we propose a pre-parametric error modeling (P-PEM) algorithm which is a real-time motion sensing algorithm for the airborne SAR in this paper. P-PEM is an extended version of parametric error modeling (PEM) method which is a motion sensing algorithm to mitigate the errors in the previous work. PEM estimates polynomial coefficients of INS error which can be assumed as a polynomial in the short term. Otherwise, P-PEM estimates polynomial coefficients in advance and uses at image acquisition section. Simulation results show that the P-PEM reduces relative position error and discontinuity effectively in real-time.

POSITION VECTOR OF SPACELIKE SLANT HELICES IN MINKOWSKI 3-SPACE

  • Ali, Ahmad T.;Mahmoud, S.R.
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.233-251
    • /
    • 2014
  • In this paper, position vector of a spacelike slant helix with respect to standard frame are deduced in Minkowski space $E^3_1$. Some new characterizations of a spacelike slant helices are presented. Also, a vector differential equation of third order is constructed to determine position vector of an arbitrary spacelike curve. In terms of solution, we determine the parametric representation of the spacelike slant helices from the intrinsic equations. Thereafter, we apply this method to find the parametric representation of some special spacelike slant helices such as: Salkowski and anti-Salkowski curves.

Slope Displacement Data Estimation using Principal Component Analysis (주성분 분석기법을 적용한 사면 계측데이터 평가)

  • Jung, Soo-Jung;Kim, Yong-Soo;Ahn, Sang-Ro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1358-1365
    • /
    • 2010
  • Estimating condition of slope is difficult because of nonlinear time dependency and seasonal effects, which affect the displacements. Displacements and displacement patterns of landslides are highly variable in time and space, and a unique approach cannot be defined to model landslide movements. Characteristics of movements are obtained by using a statistical method called Principal Component Analysis(PCA). The PCA is a non-parametric method to separate unknown, statistically uncorrelated source processes from observed mixed processes. In the non-parametric approaches, no physical assumptions of target systems are required. Instead, since the "best" mathematical relationship is estimated for given data sets of the input and output measured from target systems. As a consequence, non-parametric approaches are advantageous in modeling systems whose geomechanical properties are unknown or difficult to be measured. Non-parametric approaches are consequently more flexible in modeling than parametric approaches. This method is expected to be a useful tool for the slope management of and alarm systems.

  • PDF

Parametric Analysis of the Slosh Motion of Internal Mass in a Space Vehicle

  • Kang, Ja-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.95-95
    • /
    • 2004
  • The objectives of this study are to perform extensive analysis on internal mass motion for a wider parameter space and to provide suitable design criteria for a broader applicability for the class of spinning spacecraft. In order to examine the stability criterion determined by an analytical method, some numerical simulations will be performed and compared at various parameter points. (omitted)

  • PDF

Configurations of double-layer space trusses

  • El-Sheikh, Ahmed
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.543-554
    • /
    • 1998
  • Space truss structures may be fabricated in any of several common grid configurations. With different configurations, the truss performance varies considerably affecting both its competitiveness and suitability for specific applications. The work presented in this paper is an assessment of the most commonly adopted truss configurations and their effect on truss characteristics such as the stiffness/weight value, member stress distribution, number of joints and members, degree of redundancy and cost. The study is parametric and covers wide variations of truss aspect ratios, boundary conditions and span/depth ratios. The results of this study could be of significant value to the design of space truss structures.

Parametric Analysis and Design Optimization of a Pyrotechnically Actuated Device

  • Han, Doo-Hee;Sung, Hong-Gye;Jang, Seung-Gyo;Ryu, Byung-Tae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.409-422
    • /
    • 2016
  • A parametric study based on an unsteady mathematical model of a pyrotechnically actuated device was performed for design optimization. The model simulates time histories for the chamber pressure, temperature, mass transfer and pin motion. It is validated through a comparison with experimentally measured pressure and pin displacement. Parametric analyses were conducted to observe the detailed effects of the design parameters using a validated performance analysis code. The detailed effects of the design variables on the performance were evaluated using the one-at-a-time (OAT) method, while the scatter plot method was used to evaluate relative sensitivity. Finally, the design optimization was conducted by employing a genetic algorithm (GA). Six major design parameters for the GA were chosen based on the results of the sensitivity analysis. A fitness function was suggested, which included the following targets: minimum explosive mass for the uniform ignition (small deviation), light casing weight, short operational time, allowable pyrotechnic shock force and finally the designated pin kinetic energy. The propellant mass and cross-sectional area were the first and the second most sensitive parameters, which significantly affected the pin's kinetic energy. Even though the peak chamber pressure decreased, the pin kinetic energy maintained its designated value because the widened pin cross-sectional area induced enough force at low pressure.