• Title/Summary/Keyword: parametric modelling

Search Result 146, Processing Time 0.024 seconds

Parametric modelling of the velocity dispersion profiles of 11 elliptical galaxies : dark matter versus MOND

  • Gong, In-Taek;Chae, Kyu-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.71.3-72
    • /
    • 2016
  • 운동학적으로 측정된 질량과 측광으로 측정된 질량이 불일치하는 질량 불일치 문제는 현대천문학의 중요한 문제이다. 현재 이러한 질량 불일치에 대한 두 가지 해결책이 제시 되었다. 하나는 현대 표준우주론인 ${\Lambda}CDM$ 패러다임의 핵심 요소인 암흑물질, 다른 하나는 Milgrom에 의해 제시된 수정된 뉴턴역학(Modified Newtonian dynamics: MOND)이다. 두 방법에 대한 많은 연구가 진행되었는데, 최근 연구 결과에 의하면 나선형 은하의 회전속도 윤곽은 MOND와 잘 부합하나 타원은하에 대해서는 불명확하다. 여기서 우리는 ATLAS3D project 에서 얻어진 260개의 조기형 은하 중 거의 원형인 11개의 타원은하들을 선별하여 표준패러다임(뉴턴역학과 암흑물질)과 MOND 하에서 속도분산 윤곽에 대한 모델링을 수행하였다. 속도분산 anisotropy에 대한 parametric 모형을 가정하고 다음의 결과를 얻었다. (1) anisotropy가 속도분산 윤곽에 큰 영향을 준다는 것을 확인하였고, (2) 전체적으로 표준패러다임과 MOND 중 어느 패러다임이 관측된 속도분산 윤곽에 더 잘 부합하는지 결론을 도출하기가 어려웠고, (3) 은하 개별적으로는 표준패러다임 하에서 요구되는 암흑물질의 양이 달랐고, 선호되는 MOND 모형에서도 미세한 차이가 나타나는 것으로 보였다. 이 결과는 anisotropy에 대한 더 나은 이해를 바탕으로 개선될 수 있을 것이다.

  • PDF

Parametric Modelling of Coupled System (커플시스템의 파라메트릭 모델링)

  • Yoon, Moon-Chul;Kim, Jong-Do;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.43-50
    • /
    • 2006
  • In this successive study, the analytical realization of coupled system was introduced using the times series identification and spectrum analysis, which was compared with conventional FFT spectrum. Also, the numerical responses of second order system, which is coupled, were solved using the numerical calculation of Runge-Kutta Gill method. After numerical analysis, the displacement, velocity and acceleration were acquired. Among them, the response of displacement was used for the analysis of time series spectrum. Among several time series, the ARMAX algorithm was proved to be appropriate for the spectrum analysis of the coupled system. Using the separated response of 1st and 2nd mode, the mode was calculated separately. And the responses of mixed modes were also analyzed for calculation of the mixed modes in the coupled system.

  • PDF

Parametric Modelling of Uncoupled System (언커플시스템의 파라메트릭 모델링)

  • Yoon, Moon-Chul;Kim, Jong-Do;Kim, Kwang-Heui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.36-42
    • /
    • 2006
  • The analytical realization of uncoupled system was introduced in this study using times series and its spectrum analysis. The ARMAX spectra of time series methods were compared with the conventional FFT spectrum. Also, the response of second order system uncoupled was solved using the Runge-Kutta Gill method. In this numerical analysis, the displacement, velocity and acceleration were calculated. The displacement response among them was used for the power spectrum analysis. The ARMAX algorithm in time series was proved to be appropriate for the mode estimation and spectrum analysis. Using the separate response of first and second mode, each modes were calculated separately and the response of mixed modes was also analyzed for the mode estimation using several time series methods.

  • PDF

A Study on the Integration of Commercial Codes for Structural Optimal Design (최적설계를 위한 상용프로그램의 통합에 대한 연구)

  • 신정호;곽병만;곽기성;한영근
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.209-217
    • /
    • 1999
  • In this paper, an integrated S/W system from CAD to optimal design has been suggested and an application to a precision machine tool structure shown. The integrated system is so designed to reduce manual interfacing effort. An object-oriented programming language is used for combining 3-D CAD program, FEM and optimal design tools. In this system parametric modelling technique is applied and users can get the optimum design iteratively without much user intervention. The CAD model is automatically updated when the design parameters are transferred back to the CAD program. Not only design time can be dramatically reduced but unnecessary operation errors avoided by the integration.

  • PDF

Robust Control of a Seeker Scan Loop System Using ${\mu}$-Systheis (${\mu}$-합성법을 이용한 탐색기 주사루프의 강인 제어)

  • Lee, Ho-Pyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.180-188
    • /
    • 1999
  • ${\mu}$-synthesis is applied to design a robust controller for a seeker scan loop system which has model uncertainty and is subject to a external disturbance due to abrupt missile maneuver. The issue of modelling a real-valued parametric uncertainty of a physical seeker scan loop system is discussed. The two-degree-of-frame control structure is employed to obtain better performance. It is shown that ${\mu}$-synthesis provides a superior framework for the robust control design of a seeker scan loop system which exhibits robust performance. The proposed robust control system satisfies design requirements, and especially shows good scanning performances for conical and rosette scan patterns despite parametric uncertainty in real system model.

  • PDF

Parametric studies on punching shear behavior of RC flat slabs without shear reinforcement

  • Elsamak, Galal;Fayed, Sabry
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.355-367
    • /
    • 2020
  • This paper proposed a numerical investigation based on finite elements analysis (FEA) in order to study the punching shear behavior of reinforced concrete (RC) flat slabs using ABAQUS and SAP2000 programs. Firstly, the concrete and the steel reinforcements were modeled by hexahedral 3D solid and linear elements respectively, and the nonlinearity of the used materials was considered. In order to validate this model, experimental results considered in literature were compared with the proposed FE model. After validation, a parametric study was performed. The parameters include the slab thickness, the flexure reinforcement ratios and the axial membrane loads. Then, to reduce the time of FEA, a simplified modelling using 3D layered shell element and shear hinge concept was also induced. The effect of the footings settlement was studied using the proposed simplified nonlinear model as a case study. Results of numerical models showed that increase of the slab thickness by 185.7% enhanced the ultimate load by 439.1%, accompanied with a brittle punching failure. The punching failure occurred in one of the tested specimens when the tensile reinforcement ratio increased more than 0.65% and the punching capacity improved with increasing the horizontal flexural reinforcement; it decreased by 30% with the settlement of the outer footings.

Prognosis of aerodynamic coefficients of butterfly plan shaped tall building by surrogate modelling

  • Sanyal, Prasenjit;Banerjee, Sayantan;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.321-334
    • /
    • 2022
  • Irregularity in plan shape is very common for any type of building as it enhances better air ventilation for the inhabitants. Systematic opening at the middle of the facades makes the appearance of the building plan as a butterfly one. The primary focus of this study is to forecast the force, moment and torsional coefficient of a butterfly plan shaped tall building. Initially, Computational Fluid Dynamics (CFD) study is done on the building model based on Reynolds averaged Navier Stokes (RANS) k-epsilon turbulence model. Fifty random cases of irregularity and angle of attack (AOA) are selected, and the results from these cases are utilised for developing the surrogate models. Parametric equations are predicted for all these aerodynamic coefficients, and the training of these outcomes are also done for developing Artificial Neural Networks (ANN). After achieving the target acceptance criteria, the observed results are compared with the primary CFD data. Both parametric equations and ANN matched very well with the obtained data. The results are further utilised for discussing the effects of irregularity on the most critical wind condition.

Testing, simulation and design of back-to-back built-up cold-formed steel unequal angle sections under axial compression

  • Ananthi, G. Beulah Gnana;Roy, Krishanu;Chen, Boshan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.595-614
    • /
    • 2019
  • In cold-formed steel (CFS) structures, such as trusses, transmission towers and portal frames, the use of back-to-back built-up CFS unequal angle sections are becoming increasingly popular. In such an arrangement, intermediate welds or screw fasteners are required at discrete points along the length, preventing the angle sections from buckling independently. Limited research is available in the literature on axial strength of back-to-back built-up CFS unequal angle sections. The issue is addressed herein. This paper presents an experimental investigation on both the welded and screw fastened back-to-back built-up CFS unequal angle sections under axial compression. The load-axial shortening and the load verses lateral displacement behaviour along with the deformed shapes at failure are reported. A nonlinear finite element (FE) model was then developed, which includes material non-linearity, geometric imperfections and modelling of intermediate fasteners. The FE model was validated against the experimental test results, which showed good agreement, both in terms of failure loads and deformed shapes at failure. The validated FE model was then used for the purpose of a parametric study to investigate the effect of different thicknesses, lengths and, yield stresses of steel on axial strength of back-to-back built-up CFS unequal angle sections. Five different thicknesses and seven different lengths (stub to slender columns) with two different yield stresses were investigated in the parametric study. Axial strengths obtained from the experimental tests and FE analyses were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparisons show that the current DSM is conservative by only 7% on average, while predicting the axial strengths of back-to-back built-up CFS unequal angle sections.

Behaviour and strength of back-to-back built-up cold-formed steel unequal angle sections with intermediate stiffeners under axial compression

  • Gnana Ananthi, G. Beulah;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • In cold-formed steel (CFS) structures, such as trusses, transmission towers and portal frames, the use of back-to-back built-up CFS unequal angle sections are becoming increasingly popular. In such an arrangement, intermediate welds or screw fasteners are required at discrete points along the length, preventing the angle sections from buckling independently. Limited research is available in the literature on axial strength of back-to-back built-up CFS unequal angle sections. The issue is addressed herein. This paper presents an experimental investigation reported by the authors on back-to-back built-up CFS unequal angle sections with intermediate stiffeners under axial compression. The load-axial shortening behaviour along with the deformed shapes at failure are reported. A nonlinear finite element (FE) model was then developed, which includes material non-linearity, geometric imperfections and modelling of intermediate fasteners. The FE model was validated against the experimental test results, which showed good agreement, both in terms of failure loads and deformed shapes at failure. The validated finite element model was then used for the purpose of a parametric study comprising 96 models to investigate the effect of longer to shorter leg ratios, stiffener provided in the longer leg, thicknesses and lengths on axial strength of back-to-back built-up CFS unequal angle sections. Four different thicknesses and seven different lengths (stub to slender columns) with three overall widths to the overall depth (B/D) ratios were investigated in the parametric study. Axial strengths obtained from the experimental tests and FE analyses were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparisons show that the current DSM is conservative by only 7% and 5% on average, while predicting the axial strengths of back-to-back built-up CFS unequal angle sections with and without the stiffener, respectively.

Numerical modelling of the behavior of bare and masonry-infilled steel frames with different types of connections under static loads

  • Galal Elsamak;Ahmed H. Elmasry;Basem O. Rageh
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.103-119
    • /
    • 2024
  • In this paper, the non-linear behavior of masonry-infill and bare steel frames using different beam-column connections under monotonic static loading was investigated through a parametric study. Numerical models were carried out using one- and two-dimensional modelling to validate the experimental results. After validating the experimental results by using these models, a parametric study was carried out to model the behavior of these frames using flushed, extended, and welded connections. The results showed that using the welded or extended connection is more efficient than using the flushed type in masonry-infilled steel frames, since the lateral capacities, initial stiffness, and toughness have been increased by 155%, 601%, and 165%, respectively in the case of using welded connections compared with those used in bare frames. The FE investigation was broadened to study the influence of the variation of the uniaxial column loads on the lateral capacities of the bare/infill steel frames. As the results showed when increasing the amount of uniaxial loading on the columns, whether in tension or compression, causes the lateral load capacity of the columns to decrease by 26% for welded infilled steel frames. Finally, the influence of using different types of beam-to-column connections on the vertical capacities of the bare/infill steel frames under settlement effect was also studied. As a result, it was found that, the vertical load capacity of all types of frames and with using any type of connections is severely reduced, and this decrease may reach 62% for welded infilled frames. Furthermore, the flushed masonry-infilled steel frame has a higher resistance to the vertical loads than the flushed bare steel frame by 133%.