• Title/Summary/Keyword: parametric modeling

Search Result 671, Processing Time 0.023 seconds

Computational and experimental analysis of beam to column joints reinforced with CFRP plates

  • Luo, Zhenyan;Sinaei, Hamid;Ibrahim, Zainah;Shariati, Mahdi;Jumaat, Zamin;Wakil, Karzan;Pham, Binh Thai;Mohamad, Edy Tonnizam;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.271-280
    • /
    • 2019
  • In this paper, numerical and experimental assessments have been conducted in order to investigate the capability of using CFRP for the seismic capacity improvement and relocation of plastic hinge in reinforced concrete connections. Two scaled down exterior reinforced concrete beam to column connections have been used. These two connections from a strengthened moment frame have been tested under uniformly distributed load before and after optimization. The results of experimental tests have been used to verify the accuracy of numerical modeling using computational ABAQUS software. Application of FRP plate on the web of the beam in connections to improve its capacity is of interest in this paper. Several parametric studies were carried out for CFRP reinforced samples, with different lengths and thicknesses in order to relocate the plastic hinge away from the face of the column.

Parametric Investigation on Double Layer Liquid Coating Process with Viscous Dissipation in Optical Fiber Mass Manufacturing System (광섬유 대량생산시스템 이중 액상코팅공정의 점성소산 및 공정인자 영향성 해석연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.80-85
    • /
    • 2018
  • The present investigation on optical fiber mass manufacturing features the computational modeling and simulation on a double layer liquid coating process on glass fiber surface. The computational model employs a simplified geometry of typical fiber coating system which consists of primary and secondary coating dies along with secondary coating cup. The viscous dissipation in coating flow is incorporated into the double layer coating process simulations. Heavy temperature dependence of coating liquid viscosity is also considered in the model. The computational results found that the effects of viscous dissipation on both primary and secondary coating layer thicknesses are highly significant at higher drawing speed. Several important coating process parameters such as supply temperature and pressure of primary and secondary coating liquids are investigated and discussed in order to appreciate how those parameters affect the double layer coating layer thickness on fast moving glass fiber.

Simplification analysis of suction pile using two dimensions finite element modeling

  • Hendriyawan, Hendriyawan;Primananda, M. Abby;Puspita, Anisa Dwi;Guo, Chao;Hamdhan, Indra Noer;Tahir, M.M.;Pham, Binh Thai;Mu'azu, M.A.;Khorami, Majid
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.317-322
    • /
    • 2019
  • This paper presents the results of parametric analyses to compute the axial capacity of a suction pile using 2D and 3D finite element approaches. The study is intended to simplify the process of analyzing suction piles from 3D to 2D model. The research focuses on obtaining the coefficient to be applied into the 2D model in order to obtain results that are as close as possible to the 3D model. Two 2D models were used in the analysis, namely the plane strain and axisymmetric models. The analyses were performed using two actual offshore soil data of the North and West Java Indonesia. The study reveals that the simplification of model through 2D Finite Element is achievable by applying the appropriate coefficient to the stiffness parameters. The results show that the simplified model of the 2D FEA provides more conservative results (with the difference between 2% to 7%) than the 3D FEA.

A Development of Unified and Consistent BIM Database for Integrated Use of BIM-based Quantities, Process, and Construction Costs in Civil Engineering

  • Lee, Jae-Hong;Lee, Sung-Woo;Kim, Tae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • In this study, we have developed a calculation system for BIM-based quantities, 4D process, and 5D construction costs, by integrating object shape attributes and the standard classification system which consist of Cost Breakdown System(CBS), Object Breakdown System(OBS) and Work Breakdown System(WBS) in order to use for the 4 dimensional process control of roads and rivers. First, a new BIM library database connected with the BIM library shape objects was built according to the CBS/OBS/WBS standard classification system of the civil engineering field, and a integrated database system of BIM-based quantities, process(4D), and construction costs(5D) for roads and rivers was constructed. Nextly, the process classification system and the cost classification system were automatically disassembled to the BIM objects consisting of the Revit-family style elements. Finally, we added functions for automatically generating four dimensional activities and generating a automatic cost statement according to the combination of WBS and CBS classification system The ultimate goal of this study was to extend the integrated quantities, process(4D), and construction costs(5D) system for new roads and rivers, enabling the integrated use of process(4D) and construction costs(5D) in the design and construction stage, based on the tasks described above.

Digital Fabrication Integrated Architectural Design Process based on Lean startup (Lean startup 방법을 적용한 디지털 패브리케이션 통합 건축 설계 프로세스)

  • Jung, Jae-hwan;Kim, Sung-Ah
    • Journal of KIBIM
    • /
    • v.8 no.4
    • /
    • pp.23-33
    • /
    • 2018
  • Recently, the industry actively adopts the cutting-edge technologies of the fourth industrial revolution and uses them to enhance the productivity and service of mass-customization. The manufacturing industry is creating new processes and business models by achieving digital transformations through a lean start-up approach aimed at achieving the highest customer satisfaction with minimal resources. Although attempts are made to manufacture the building by introducing the latest technology in architecture, it is applied sporadically, not as an integrated system, in the entire phase of the architectural project. This paper analyzes the changes in the construction industry through the application of core technologies of the fourth industrial revolution. Design processes are analyzed for the digital transformation of the construction industry by case study of advanced architectural design practice. A novel design concept model 'Architectural lean startup' is proposed by combining the architectural process and the lean start up method. Through the design of the bus stop based on the architectural lean startup concept, it is confirmed that the designer repeats the 'Generate-Test-Analysis' to develop the design and generate the final result.

Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.377-397
    • /
    • 2018
  • In the present investigation, thermal buckling and free vibration characteristics of functionally graded (FG) Timoshenko nanobeams subjected to nonlinear thermal loading are carried out by presenting a Navier type solution. The thermal load is assumed to be nonlinear distribution through the thickness of FG nanobeam. Thermo-mechanical properties of FG nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model and the material properties are assumed to be temperature-dependent. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the thermal buckling and vibration analysis of graded nanobeams including size effect. Moreover, in following a parametric study is accompanied to examine the effects of the several parameters such as nonlocal parameter, thermal effect, power law index and aspect ratio on the critical buckling temperatures and natural frequencies of the size-dependent FG nanobeams in detail. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared some cases in the literature. Also, it is found that the small scale effects and nonlinear thermal loading have a significant effect on thermal stability and vibration characteristics of FG nanobeams.

Inhomogeneous bonding state modeling for vibration analysis of explosive clad pipe

  • Cao, Jianbin;Zhang, Zhousuo;Guo, Yanfei;Gong, Teng
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.233-242
    • /
    • 2019
  • Early detection of damage bonding state such as insufficient bonding strength and interface partial contact defect for the explosive clad pipe is crucial in order to avoid sudden failure and even catastrophic accidents. A generalized and efficient model of the explosive clad pipe can reveal the relationship between bonding state and vibration characteristics, and provide foundations and priory knowledge for bonding state detection by signal processing technique. In this paper, the slender explosive clad pipe is regarded as two parallel elastic beams continuously joined by an elastic layer, and the elastic layer is capable to describe the non-uniform bonding state. By taking the characteristic beam modal functions as the admissible functions, the Rayleigh-Ritz method is employed to derive the dynamic model which enables one to consider inhomogeneous system and any boundary conditions. Then, the proposed model is validated by both numerical results and experiment. Parametric studies are carried out to investigate the effects of bonding strength and the length of partial contact defect on the natural frequency and forced response of the explosive clad pipe. A potential method for identifying the bonding quality of the explosive clad pipe is also discussed in this paper.

Numerical framework for stress cycle assessment of cables under vortex shedding excitations

  • Ruiz, Rafael O.;Loyola, Luis;Beltran, Juan F.
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.225-238
    • /
    • 2019
  • In this paper a novel and efficient computational framework to estimate the stress range versus number of cycles curves experienced by a cable due to external excitations (e.g., seismic excitations, traffic and wind-induced vibrations, among others) is proposed. This study is limited to the wind-cable interaction governed by the Vortex Shedding mechanism which mainly rules cables vibrations at low amplitudes that may lead to their failure due to bending fatigue damage. The algorithm relies on a stochastic approach to account for the uncertainties in the cable properties, initial conditions, damping, and wind excitation which are the variables that govern the wind-induced vibration phenomena in cables. These uncertainties are propagated adopting Monte Carlo simulations and the concept of importance sampling, which is used to reduce significantly the computational costs when new scenarios with different probabilistic models for the uncertainties are evaluated. A high fidelity cable model is also proposed, capturing the effect of its internal wires distribution and helix angles on the cables stress. Simulation results on a 15 mm diameter high-strength steel strand reveal that not accounting for the initial conditions uncertainties or using a coarse wind speed discretization lead to an underestimation of the stress range experienced by the cable. In addition, parametric studies illustrate the computational efficiency of the algorithm at estimating new scenarios with new probabilistic models, running 3000 times faster than the base case.

Web buckling behavior of FRP composite box-beams: Governing parameters and their effect

  • Kasiviswanathan, M.;Upadhyaya, Akhil
    • Advances in Computational Design
    • /
    • v.6 no.1
    • /
    • pp.55-75
    • /
    • 2021
  • The lightweight superstructure is beneficial for bridges in remote areas and emergency erection. In such weight-sensitive applications, the combination of fiber-reinforced polymer (FRP) as a material and box-beams as a structural system have enormous scope. This combination offers various advantages, but as a thin-walled structure, their designs are often governed by buckling criteria. FRP box-beams lose their stability either by flange or web buckling mode. In this paper, the web buckling behavior of simply supported FRP box-beam subjected to transverse load has been studied by modeling full box-beam to consider the effect of real state of stress (stress variation in length direction) and boundary conditions (rotational restraint at web-flange junction). A parametric study by varying the sectional geometry and fiber orientation is carried out by using ANSYS software. The accuracy of the FE models was ensured by verifying them against the available results provided in the literature. With the help of developed database the influential parameters (i.e., αs, βw, δw and γ) affecting the web bucklings are identified. Design trends have been developed which will be helpful to the designers in the preliminary stage. Finally, the importance of governing parameters and design trends are demonstrated through pedestrian bridge design.

Prediction of compressive strength of concrete modified with fly ash: Applications of neuro-swarm and neuro-imperialism models

  • Mohammed, Ahmed;Kurda, Rawaz;Armaghani, Danial Jahed;Hasanipanah, Mahdi
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.489-512
    • /
    • 2021
  • In this study, two powerful techniques, namely particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) were selected and combined with a pre-developed ANN model aiming at improving its performance prediction of the compressive strength of concrete modified with fly ash. To achieve this study's aims, a comprehensive database with 379 data samples was collected from the available literature. The output of the database is the compressive strength (CS) of concrete samples, which are influenced by 9 parameters as model inputs, namely those related to mix composition. The modeling steps related to ICA-ANN (or neuro-imperialism) and PSO-ANN (or neuro-swarm) were conducted through the use of several parametric studies to design the most influential parameters on these hybrid models. A comparison of the CS values predicted by hybrid intelligence techniques with the experimental CS values confirmed that the neuro-swarm model could provide a higher degree of accuracy than another proposed hybrid model (i.e., neuro-imperialism). The train and test correlation coefficient values of (0.9042 and 0.9137) and (0.8383 and 0.8777) for neuro-swarm and neuro-imperialism models, respectively revealed that although both techniques are capable enough in prediction tasks, the developed neuro-swarm model can be considered as a better alternative technique in mapping the concrete strength behavior.