• Title/Summary/Keyword: parametric design evaluation

Search Result 133, Processing Time 0.029 seconds

Performance Evaluation and Parametric Study of MGA in the Solution of Mathematical Optimization Problems (수학적 최적화 문제를 이용한 MGA의 성능평가 및 매개변수 연구)

  • Cho, Hyun-Man;Lee, Hyun-Jin;Ryu, Yeon-Sun;Kim, Jeong-Tae;Na, Won-Bae;Lim, Dong-Joo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.416-421
    • /
    • 2008
  • A Metropolis genetic algorithm (MGA) is a newly-developed hybrid algorithm combining simple genetic algorithm (SGA) and simulated annealing (SA). In the algorithm, favorable features of Metropolis criterion of SA are incorporated in the reproduction operations of SGA. This way, MGA alleviates the disadvantages of finding imprecise solution in SGA and time-consuming computation in SA. It has been successfully applied and the efficiency has been verified for the practical structural design optimization. However, applicability of MGA for the wider range of problems should be rigorously proved through the solution of mathematical optimization problems. Thus, performances of MGA for the typical mathematical problems are investigated and compared with those of conventional algorithms such as SGA, micro genetic algorithm (${\mu}GA$), and SA. And, for better application of MGA, the effects of acceptance level are also presented. From numerical Study, it is again verified that MGA is more efficient and robust than SA, SGA and ${\mu}GA$ in the solution of mathematical optimization problems having various features.

  • PDF

A Fundamental Study on Effective Width Evaluation of Laminated Composite Box Girder (복합적층 박스거더의 유효폭 산정을 위한 기초연구)

  • Chun, Kyoung-Sik;Ji, Hyo-Seon;Park, Won-Tae
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.26-31
    • /
    • 2015
  • The domestic and foreign specifications presented the effective width based on flange length to width ratio only. The existing paper on the effective width grasped of the effect of span, load type and cross-section properties, but localized steel bridges. Recently, The studies are going on in progress for the application of fiber reinforced composite material in construction field. Therefore, it is required to optimum design that have a good grasp the deformation characteristic of the displacements and stresses distribution and predict variation of the effective width for serviceability loading. This research addresses the effective width of all composite material box girder bridges using the finite element method. The characteristics of the effective width of composite structures may vary according to several causes, e.g., change of fibers, aspect, etc. Parametric studies were conducted to determine the effective width on the stress elastic analysis of all composite materials box bridges, with interesting observations. The various results through numerical analysis will present an important document for construct all composite material bridges.

Wind load estimation of super-tall buildings based on response data

  • Zhi, Lun-hai;Chen, Bo;Fang, Ming-xin
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.625-648
    • /
    • 2015
  • Modern super-tall buildings are more sensitive to strong winds. The evaluation of wind loads for the design of these buildings is of primary importance. A direct monitoring of wind forces acting on super-tall structures is quite difficult to be realized. Indirect measurements interpreted by inverse techniques are therefore favourable since dynamic response measurements are easier to be carried out. To this end, a Kalman filtering based inverse approach is developed in this study so as to estimate the wind loads on super-tall buildings based on limited structural responses. The optimum solution of Kalman filter gain by solving the Riccati equation is used to update the identification accuracy of external loads. The feasibility of the developed estimation method is investigated through the wind tunnel test of a typical super-tall building by using a Synchronous Multi-Pressure Scanning System. The effects of crucial factors such as the type of wind-induced response, the covariance matrix of noise, errors of structural modal parameters and levels of noise involved in the measurements on the wind load estimations are examined through detailed parametric study. The effects of the number of vibration modes on the identification quality are studied and discussed in detail. The made observations indicate that the proposed inverse approach is an effective tool for predicting the wind loads on super-tall buildings.

Accumulation of wind induced damage on bilinear SDOF systems

  • Hong, H.P.
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.145-158
    • /
    • 2004
  • The evaluation of the accumulation of permanent set for inelastic structures due to wind action is important in establishing a criterion to select a reduced design wind load and in incorporating the beneficial ductile behaviour in wind engineering. A parametric study of the accumulation of the permanent set as well as the ductility demand for bilinear single-degree-of-freedom (SDOF) systems is presented in the present study. The dynamic analysis of the inelastic SDOF system is carried out using the method of Newmark for artificially generated time history of wind speed. Simulation results indicate that the mean of the normalized damage rate is highly dependent on the natural frequency of vibration. This mean value is relatively insensitive to the damping ratio if the damping ratio is larger than 5%. The scatter associated with the accumulation of the permanent set is very significant. The consideration of the postyield stiffness can significantly reduce the accumulation of the permanent set if the ratio of the yield strength to the expected peak response is small. The results also show that the ductility demand due to the wind action over a period of one hour for flexible structures can be much less than that for rigid structures or structures with larger damping ratio if the SDOF systems are designed with a reduced peak response caused by the fluctuating wind.

Numerical Simulation of Ground Heat Exchanger Embedded Pile Considering Unsaturated Soil Condition (불포화 지반 조건을 고려한 파일 매입형 열교환기의 수치해석)

  • Choi, Jung-Chan;Lee, Seung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.213-220
    • /
    • 2010
  • This study presents a numerical simulation model of vertical ground heat exchangers, considering unsaturated hydro static ground conditions induced by the ground water table fluctuation. Heat transfer in ground and grout is modeled by a 3-D FEM transient conductive heat transfer model, where heat transfer between circulating fluid and heat exchanging pipe is treated as 1-D quasi steady state forced convective elements. To take into account the unsaturated ground condition, soil thermal conductivity and heat capacity which are dependent on the matric suction are applied to ground elements. Parametric studies considering various ground water table conditions are conducted to investigate the influence of unsaturated hydro static ground condition on the mean heat exchange rate of ground heat exchanger. Simulation results considering water table fluctuation show 60~100% of mean heat exchange rate for a saturated soil condition and 125~208% of that for a dry soil condition. Thus consideration of unsaturated soil condition is substantially recommended for more accurate design and performance evaluation for ground heat exchangers.

  • PDF

Effect of Bracket and H-beam Members on the Sungsoo Grand Bridge (브라켓 및 H-빔 부재가 성수대교 붕괴에 미친 영향)

  • 조효남;임종권;안중산
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.422-430
    • /
    • 1998
  • This paper presents the results of a major parametric study on the collapse cause of the Sungsoo Grand Bridge, a Gerber-type continuous truss bridge, which had collapsed just at the 15th year since opening to traffic. Among the various collapse causes such as poor design, poor welding, poor maintenance, and heavy traffic loads, this study focuses on the collapse cause assessment incorporating the effects of braket and H-beam members right below the expansion joint of the suspended truss. A local FEM analysis using fine shell elements is carrided out for the more precise estimation of stress range of the vertical pin-connected hanger whose fatigue fracture triggered the collapse of the bridge. Both the conventional S-N approach and the Ang-Munse's fatigue reliability method are used for the evaluation of the fatigue life and fatigue failure probability for the assessment based on all the available results of various field and labolatory tests. From these observations, It may be affirmatively stated that the effects of bracket and H-beam members accelerated the fatigue failure, and thus should be regarded as one of major causes that triggered the bridge collapse

  • PDF

Fatigue Strength Analysis of Marine Propeller Blade to Change in Skew Angle (박용 프로펠라의 스큐각 변화에 따른 피로강도해석)

  • Bal-Young Kim;Joo-Sung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.80-87
    • /
    • 1998
  • This paper deals with the evaluation of structural safety to fatigue strength of marine propeller blades having high skew angle and operating in irregular wake field. The determination of the optimum skew angle of a propeller blade is one of the important task at the initial design stage especially in the case of high speed vessel such as container ships. A computer program system has been developed to evaluate the structural safety to fatigue strength and has been applied to several propeller blades with varying skew angle within a wide range. In the parametric study the pressure acting on the blade surface is calculated using the non-lineal lifting surface theory and the structural analysis is performed using MSC/NASTRAN. The relationship between skew angle and structural safety to fatigue strength is investigated and this paper ends with describing the optimum skew angle of a propeller blade.

  • PDF

Evaluation of Mixing Conditions for the Production of Optimized High Flowing Concrete

  • Kim, Sang-Chel
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.79-88
    • /
    • 1999
  • Most difficulties of inducing high fluidity on the concrete mixing design with a strength range of 210 to 240kg/$\textrm{cm}^2$ result from the segregation of aggregates due to the shortage of cementitious binders. To solve the problem, this study concentrated on finding the optimized amount of binder material which does not affect the concrete strength and is also economical. Also there were studies on the use of intermediate sized aggregates to avoid the gap-grading between coarse and fine aggregates so that the material segregation in high flowing concrete was and minimalized the fluidity and penetration capacity of the reinforcing bars was enhanced. Throughout the parametric study with respect to water/binder ratio. superplasticizer. replaceable mineral admixture, the size of coarse aggregate and mixing methods, the effect of each constituent on the characteristics of high flowing concrete could be observed. As a result or partially using stone powder or an intermediate class of aggregate (max. diameter 13mm) . it was fund that the fluidity of concrete significantly increased without material segregation and any change of compressive strengths. It was also proved in this study that proper mixing time and speed are significant factors influence the performence of high flowing concrete.

  • PDF

Flexural ductility of reinforced and prestressed concrete sections with corrugated steel webs

  • Chen, X.C.;Au, F.T.K.;Bai, Z.Z.;Li, Z.H.;Jiang, R.J.
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.625-642
    • /
    • 2015
  • Prestressed concrete bridges with corrugated steel webs have emerged as one of the promising bridge forms. This structural form provides excellent structural efficiency with the concrete flanges primarily taking bending and the corrugated steel webs primarily taking shear. In the design of this type of bridges, the flexural ductility and deformability as well as strength need to be carefully examined. Evaluation of these safety-related attributes requires the estimation of full-range behaviour. In this study, the full-range behaviour of beam sections with corrugated steel webs is evaluated by means of a nonlinear analytical method which uses the actual stress-strain curves of the materials and considers the path-dependence of materials. In view of the different behaviour of components and the large shear deformation of corrugated steel webs with negligible longitudinal stiffness, the assumption that plane sections remain plane may no longer be valid. The interaction between shear deformation and local bending of flanges may cause additional stress in flanges, which is considered in this study. The numerical results obtained are compared with experimental results for verification. A parametric study is undertaken to clarify the effects of various parameters on ductility, deformability and strength.

Investigation of Effect of Input Ground Motion on the Failure Surface of Mountain Slopes

  • Khalid, Muhammad Irslan;Pervaiz, Usman;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.7
    • /
    • pp.5-12
    • /
    • 2021
  • The reliable seismic stability evaluation of the natural slopes and geotechnical structures has become a critical factor of the design. Pseudo-static or permanent displacement methods are typically employed to evaluate the seismic slope performance. In both methods, the effect of input ground motion on the sliding surface is ignored, and failure surface from the limit equilibrium method is used. For the assessment of the seismic sensitivity of failure surface, two-dimensional non-linear finite element analyses are performed. The performance of the finite element model was validated against centrifuge measurements. A parametric study with a range of input ground motion was performed, and numerical results were used to assess the influence of ground motion characteristics on the sliding surface. Based on the results, it is demonstrated that the characteristics of input ground motion have a significant influence on the location of the seismically induce failure surface. In addition to dynamic analysis, pseudo-static analyses were performed to evaluate the discrepancy. It is observed that sliding surfaces developed from pseudo-static and dynamic analyses are different. The location of the failure surface change with the amplitude and Tm of motion. Therefore, it is recommended to determine failure surfaces from dynamic analysis