• Title/Summary/Keyword: parametric design evaluation

Search Result 133, Processing Time 0.031 seconds

Static and fatigue performance of short group studs connector in novel post-combination steel-UHPC composite deck

  • Han Xiao;Wei Wang;Chen Xu;Sheraz Abbas;Zhiping Lin
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.659-674
    • /
    • 2024
  • Casting Ultra High-Performance Concrete (UHPC) on an orthotropic steel deck and forming a composite action by connectors could improve the steel deck fatigue performance. This study presents the mechanical performance of a proposed post-combination connection between UHPC and steel, which had a low constraint effect on UHPC shrinkage. A total of 10 push-out tests were conducted for static and fatigue performance investigations. And the test results were compared with evaluation methods in codes to verify the latter's applicability. Meanwhile, nonlinear simulation and parametric works with material damage plasticity models were also conducted for the static and fatigue failure mechanism understanding. The static and fatigue test results both showed that fractures at stud roots and surrounding local UHPC crushes were the main failure appearances. Compared with normally arranged studs, group arrangement could result in reductions of static stud shear stiffness, strength, and fatigue lives, which were about 18%, 12%, and 27%, respectively. Compared with the test results, stud shear capacity and fatigue lives evaluations based on the codes of AASHTO, Eurocode 4, JSCE and JTG D64 could be applicable in general while the safety redundancies tended to be smaller or even insufficient for group studs. The analysis results showed that arranging studs in groups caused obviously uneven strain distributions. The severer stress concentration and larger strain ranges caused the static and fatigue performance degradations of group studs. The research outcome provides a very important basis for establishing a design method of connections in the novel post-combination steel-UHPC composite deck.

Evaluation on Bending Moment of Bridge Approach Slabs under Vehicle Load Considering Soil Settlement (지반침하를 고려한 교량 접속판의 차량하중에 의한 휨모멘트 평가)

  • Back, Sung-Yong;Kim, Jung-Gang;Cho, Baik-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5939-5946
    • /
    • 2013
  • The bridge approach slabs (BAS) to provide a transitional roadway between a roadway pavement and a bridge structure have not performed adequately due to various factors. The current Korean Roadway Design Guidelines treat the BAS as a simply supported beam with 70% of the span length and do not consider settlement and void development underneath the slab. To investigate the effect of soil settlements on the bending moment of BAS, a beam on elastic support (BAS-ES) was used in the present study. The parameters used in this study were span length, washout length, washout location, and soil modulus. It was shown from the parametric study that washout regions closer to the midspan exhibit maximum moment in the slab. Since voids under the BAS have typically been observed to be closer to bridge abutments, the springs from the abutment were removed to simulate settlement and void development in the model. The design moments based on AASHTO LRFD Bridge Design Specifications were compared to those of Korean Standard Specifications for Highway Bridge and Design Trucks for Highway Bridges. Even if the design moment from BAS-ES was used to incorporate the effect of the potential washout, significant savings could still be achieved compared to the current BAS design.

Evaluation of Flood Events Considering Correlation between Flood Event Attributes (홍수사상 요소의 상관성을 고려한 홍수사상의 평가)

  • Lee, Jeong Ho;Yoo, Ji Young;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.257-267
    • /
    • 2010
  • A flood event can be characterized by three attributes such as peak discharge, total flood volume, and flood duration, which are correlated each other. However, the amount of peak discharge is only used to evaluate the flood events for the hydrological plan and design. The univariate analysis has a limitation in describing the complex probability behavior of flood events. Thus, the univariate analysis cannot derive satisfying results in flood frequency analysis. This study proposed bivariate flood frequency analysis methods for evaluating flood events considering correlations among attributes of flood events. Parametric distributions such as Gumbel mixed model and bivariate gamma distribution, and a non-parametric model using a bivariate kernel function were introduced in this study. A time series of annual flood events were extracted from observations of inflow to the Soyang River Dam and the Daechung Dam, respectively. The joint probability distributions and return periods were derived from the relationship between the amount of peak discharge and the total volume of flood runoff. Applicabilities of bivariate flood frequency analysis were examined by comparing the return period acquired from the proposed bivariate analyses and the conventional univariate analysis.

Hydrological Studies on the flood and Risk of failure of the Hydraulic Structures(Ⅰ) -On the annual maximum series- (水利構造物의 破壞危險度와 設計洪水量에 관한 水文學的 硏究(Ⅰ) -年最高値 系列을 中心으로-)

  • Lee, Soon-Hyuk;Park, Myeong-Keun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.23-37
    • /
    • 1985
  • This studies were carried out to get characteristics of frequency distribution, probable flood flows according to the return periods, and the correlation between return periods and those length of records affect the Risk of failure in the annual maximum series of the main river systems in Korea. Especially, Risk analysis according to the levels were emphasized in relation to the design frequency factors for the different watersheds. Twelve watersheds along Han, Geum, Nak Dong, Yeong San and Seom Jin river basin were selected as studying basins. The results were analyzed and summarized as follows. 1. Type 1 extremal distribution was newly confirmed as a good fitted distribution at selected watersheds along Geum and Yeong San river basin. Three parameter lognormal Seom Jin river basin. Consequently, characteristics of frequency distribution for the extreme value series could be changed in connection with the watershed location even the same river system judging from the results so far obtained by author. 2. Evaluation of parameters for Type 1 extremal and three parameter lognormal distribution based on the method of moment by using an electronic computer. 3. Formulas for the probable flood flows were derived for the three parameter lognormal and Type 1 extremal distribution. 4. Equations for the risk to failure could be simplified as $\frac{n}{N+n}$ and $\frac{n}{T}$ under the condition of non-parametric method and the longer return period than the life of project, respectively. 5. Formulas for the return periods in relation to frequency factors were derived by the least square method for the three parameter lognormal and Type 1 extremal distribution. 6. The more the length of records, the lesser the risk of failure, and it was appeared that the risk of failure was increasing in propotion to the length of return periods even same length of records. 7. Empirical formulas for design frequency factors were derived from under the condition of the return periods identify with the life of Hydraulic structure in relation to the risk level. 8. Design frequency factor was appeared to be increased in propotion to the return periods while it is in inverse proportion to the levels of the risk of failure. 9. Derivation of design flood including the risk of failure could be accomplished by using of emprical formulas for the design frequency factor for each watershed.

  • PDF

Evaluation of Conventional Prediction Models for Soil Thermal Conductivity to Design Horizontal Ground Heat Exchangers (수평형 지중열교환기 설계를 위한 토양 열전도도 예측 모델 평가)

  • Sohn, Byonghu;Wi, Jihae;Park, Sangwoo;Lim, Jeehee;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.5-14
    • /
    • 2013
  • Among the various thermal properties, thermal conductivity of soils is one of the most important parameters to design a horizontal ground heat exchanger for ground-coupled heat pump systems. It is well known that the thermal conductivity of soil is strongly influenced by its density and water content because of its particulate structure. This paper evaluates some of the well-known prediction models for the thermal conductivity of particulate media such as soils along with the experimental results. The semi-theoretical models for two-component materials were found inappropriate to estimate the thermal conductivity of dry soils. It comes out that the model developed by Cote and Konrad provides the best overall prediction for unsaturated sands available in the literature. Also, a parametric analysis is conducted to investigate the effect of thermal conductivity, water content and soil type on the horizontal ground heat exchanger design. The results show that a design pipe length for the horizontal ground heat exchanger can be reduced with an increase in soil thermal conductivity. The current research concludes that the dimension of the horizontal ground heat exchanger can be reduced to a certain extent by backfilling materials with a higher thermal conductivity of solid particles.

Parametric Study for Assessment of Reaction Forces on Ship Docking Supports

  • Ryu, Cheol-Ho;Kim, Sung-Chan;Lee, Jang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.3
    • /
    • pp.290-301
    • /
    • 2013
  • The docking analysis of a global ship structure is requested to evaluate its structural safety against the reaction forces at supports during docking works inside a dry dock. That problem becomes more important recently as the size of ships is getting larger and larger. The docking supports are appropriately arranged in a dock to avoid their excessive reaction forces which primarily cause the structural damages in docking a ship and, up to now, the structural safety has been assessed against the support arrangement by the finite element analysis (FEA) of a global ship structure. However, it is complicated to establish the finite element model of the ship in the current structural design environment of a shipyard and it takes over a month to finish the work. This paper investigates a simple and fast approach to carry out a ship docking analysis by a simplified grillage model and to assign the docking supports position on the model. The grillage analysis was considered from the motivation that only the reaction forces at supports are sufficient to assess their arrangement. Since the simplified grillage model of the ship cannot guarantee its accuracy quantitatively, modeling strategies are proposed to improve the accuracy. In this paper, comparisons between the proposed approach and three-dimensional FEA for typical types of ships show that the results from the present grillage model have reasonably good agreement with the FEA model. Finally, an integrated program developed for docking supports planning and its evaluation by the proposed approach is briefly described.

Finite Element Analysis of Ultrasonic Wave Propagation and Scattering (초음파 전파 및 산란 문제의 유한요소 해석)

  • Jeong, Hyun-Jo;Park, Moon-Cheol;Park, Yun-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.411-421
    • /
    • 2002
  • The accurate analysis of ultrasonic wave propagation and scattering plays an important role in many aspects of nondestructive evaluation. A numerical analysis makes it possible to perform parametric studies, and in this way the probability of detection and reliability of test results can be improved. In this study, a finite element method was developed for the analysis of ultrasonic fields, the accuracy of results was checked by solving several representative problems. The size of element and the integral time step, which are the critical components for the convergence of numerical results, were determined in a commercial finite element code. Several propagation and scattering problems in 2-D isotropic and anisotropic materials were solved and their results were compared with known analytical or experimental results.

Evaluation of Local Buckling Strength of Stiffened Plates under Uni-axial Compression due to Closed-section Rib Stiffness (폐단면리브 강성에 따른 일축압축을 받는 보강판의 국부좌굴강도 평가)

  • Choi, Byung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.949-954
    • /
    • 2013
  • Generally, structural plates under axial compression should be stiffened by longitudinal stiffeners in order to enhance the buckling strength. Though U-shaped ribs would be more efficient for the stiffened plate system, there is in the absence of a proper design guides or relevant research results. Thus this study is aimed to examine the local buckling behavior of stiffened plates with U-section ribs. 3-dimensional analysis models which include 3 types of U-shaped longitudinal stiffeners were simulated by using the finite element code ABAQUS. The bifurcation analysis were conducted and then the buckling analysis results are compared with the theoretical equation values. It is found that the rotational constraint effect provided by the U-ribs should increase the local buckling strength. Some features drawn from a series of parametric study results are summarized.

Evaluation of the reproducibility of various abutments using a blue light model scanner

  • Kim, Dong-Yeon;Lee, Kyung-Eun;Jeon, Jin-Hun;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.328-334
    • /
    • 2018
  • PURPOSE. To evaluate the reproducibility of scan-based abutments using a blue light model scanner. MATERIALS AND METHODS. A wax cast abutment die was fabricated, and a silicone impression was prepared using a silicone material. Nine study dies were constructed using the prepared duplicable silicone, and the first was used as a reference. These dies were classified into three groups and scanned using a blue light model scanner. The first three-dimensional (3D) data set was obtained by scanning eight dies separately in the first group. The second 3D data set was acquired when four dies were placed together in the scanner and scanned twice in the second group. Finally, the third 3D data set was obtained when eight dies were placed together in the scanner and scanned once. These data were then used to define the data value using third-dimension software. All the data were then analyzed using the non-parametric Kruskal-Wallis H test (${\alpha}=.05$) and the post-hoc Mann-Whitney U-test with Bonferroni's correction (${\alpha}=.017$). RESULTS. The means and standard deviations of the eight dies together were larger than those of the four dies together and of the individual die. Moreover, significant differences were observed among the three groups (P<.05). CONCLUSION. With larger numbers of abutments scanned together, the scan becomes more inaccurate and loses reproducibility. Therefore, scans of smaller numbers of abutments are recommended to ensure better results.

Evaluation of Close-Range Blast Pressure Mitigation using a Sacrificial Member (희생부재를 이용한 근거리 폭파압력 저감 효과)

  • Shim, Chang-Su;Yun, Nu-Ri
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.11-23
    • /
    • 2010
  • A sacrificial member with aluminum foam of excellent energy absorption capacity was proposed for the protection of significant structures. Parametric studies of explicit finite element analyses were performed to investigate the pressure mitigation of close-range air-blasts. The scaled distance of the blast had a range of Z=0.48~0.95 and an empirical blast load function was utilized. The analytical parameters of the aluminum foam were density, thickness and the existence of a cover sheet. Analytical results showed that the transmitted pressure can be controlled to have a similar level of yield values of the foam by using a foam with low density and higher thickness. As the blast load increased, the sacrificial member needed to have higher density and thickness. A cover sheet of the foam clearly showed its effect on the wider distribution of blast pressure. It is necessary to determine the design parameters of sacrificial foams considering different energy dissipation capacities according to the scaled distance.