• Title/Summary/Keyword: parametric adaptive control

Search Result 64, Processing Time 0.026 seconds

Design of an RBFN-based Adaptive Tracking Controller for an Uncertain Mobile Robot (불확실한 이동 로봇에 대한 RBFN 기반 적응 추종 제어기의 설계)

  • Shin, Jin-Ho;Baek, Woon-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1238-1245
    • /
    • 2014
  • This paper proposes an RBFN-based adaptive tracking controller for an electrically driven mobile robot with parametric uncertainties and external disturbances. A mobile robot model considered in this paper includes all models of the robot body and actuators with uncertain kinematic and dynamic parameters, and uncertain frictions and external disturbances. The proposed controller consists of an RBFN(Radial Basis Function Network) and a robust adaptive controller. The presented RBFN is used to approximate unknown nonlinear robot dynamic functions. The proposed controller is adjusted by the adaptation laws obtained through the Lyapunov stability analysis. The proposed control scheme does not a priori need the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. Also, nominal parameter values are not required in the controller. The global stability of the closed-loop robot control system is guaranteed using the Lyapunov stability theory. Simulation results show the validity and robustness of the proposed control scheme.

A model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.437-454
    • /
    • 2023
  • Real-time hybrid simulation (RTHS), which has the advantages of a substructure pseudo-dynamic test, is widely used to investigate the rate-dependent mechanical response of structures under earthquake excitation. However, time delay in RTHS can cause inaccurate results and experimental instabilities. Thus, this study proposes a model-based adaptive control strategy using a Kalman filter (KF) to minimize the time delay and improve RTHS stability and accuracy. In this method, the adaptive control strategy consists of three parts-a feedforward controller based on the discrete inverse model of a servohydraulic actuator and physical specimen, a parameter estimator using the KF, and a feedback controller. The KF with the feedforward controller can significantly reduce the variable time delay due to its fast convergence and high sensitivity to the error between the desired displacement and the measured one. The feedback control can remedy the residual time delay and minimize the method's dependence on the inverse model, thereby improving the robustness of the proposed control method. The tracking performance and parametric studies are conducted using the benchmark problem in RTHS. The results reveal that better tracking performance can be obtained, and the KF's initial settings have limited influence on the proposed strategy. Virtual RTHSs are conducted with linear and nonlinear physical substructures, respectively, and the results indicate brilliant tracking performance and superb robustness of the proposed method.

Fault Tolerant Control Design Using IMM Filter with an Application to a Flight Control System (IMM 필터를 이용한 고장허용 제어기법 및 비행 제어시스템에의 응용)

  • 김주호;황태현;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.87-87
    • /
    • 2000
  • In this paper, an integrated design of fault detection, diagnosis and reconfigurable control tot multi-input and multi-output system is proposed. It is based on the interacting multiple model estimation algorithm, which is one of the most cost-effective adaptive estimation techniques for systems involving structural and/or parametric changes. This research focuses on the method to recover the performance of a system with failed actuators by switching plant models and controllers appropriately. The proposed scheme is applied to a fault tolerant control design for flight control system.

  • PDF

Impedance Control of Backdrivable Hydraulic Actuation Systems with Explicit Disturbance Estimation (직접 외란 추정을 통한 역구동성 유압 구동 시스템의 임피던스 제어)

  • Yoo, Sunkyum;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.348-356
    • /
    • 2019
  • The backdrivable servovalve is a desirable component for force and interaction control of hydraulic actuation systems because it provides direct force generation mechanical impedance reduction by its own inherent backdrivability. However, high parametric uncertainty and friction effects inside the hydraulic actuation system significantly degrade its advantage. To solve this problem, this letter presents a disturbance-adaptive robust internal-loop compensator (DA-RIC) to generate ideal interactive control performance from the backdrivable-servovalve-based system. The proposed control combines a robust internal-loop compensator structure (RIC) with an explicit disturbance estimator designed for asymptotic disturbance tracking, such that the controlled system provide stable and ideal dynamic behavior for impedance control, while completely compensating the disturbance effects. With the aid of a backdrivable servovalve, we show that the proposed control structure can be implemented based on a simplified nominal model, and the controller enables implementation without accurate knowledge of the target system parameters and disturbances. The performance and properties of the proposed controller are verified by simulation and experiments.

Robust adaptive control of satellite (위성체의 강인적응제어 연구)

  • 노영환;이상용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.323-326
    • /
    • 1996
  • In a simple system, the control schemes work well provided that the characteristic of the plant or the coefficients are known and fixed. But the condition is not met in the system like satellite, for example, varying over time and the coefficients of dynamic system change due to disturbance, etc, and the better precise model is required to control the given dynamic system well. Conversely, the fixed controller make the unmodel dynamic system with a wide class of modelling error be stable within the error tolerance limits. Also, a robust model reference adaptive control scheme is designed for the plant, paying attention to the derivation of the appropriate parametric model and the design of the normalizing signal to guarantee that it has the desired properties.

  • PDF

Speed control of AC Servo motor using neural network (뉴럴네트웤을 이용한 AC 서보 전동기의 속도제어)

  • Ban, Gi-Jong;Yun, Gwang-Ho;Choe, Seong-Dae;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2747-2749
    • /
    • 2005
  • This paper presents an intelligent control system for an ac servo motor dirve to track periodic commands using a neural network. AC servo motor drive system is rather similar to a linear system. However, the uncertainties, such as machanical parametric variation, external disturbance, uncertainty due to nonideal in transient state. therefore an intelligent control system that isan on-line trained neural network controller with adaptive learning rates.

  • PDF

Adaptive Control of Machined Surface Using Current of the Feed Motor at Rest (정지상태 모터의 전류 신호를 이용한 피삭재의 가공면 적응제어)

  • 정영훈;윤승현;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.79-82
    • /
    • 1997
  • The current from the feed motor of a machine tool contains substantial information about the machining state. There have been many researches that investigated the current as a measure for the cutting forces. However it has not been reported that indirect measurement of the cutting forces from the current of the feed motor at rest is possible. The cutting force normal to the machined surface influences the machined surface of the workpiece, which makes it necessary to estimate this force to control the roughness of the machined surface. But the unpredictable behavior of the current prevents applying the current to prediction of the cutting state. In this paper, empirical approach was conducted to resolve the problem. Also parametric adaptive and fuzzy logic control strategies are applied to the force regulation problem. As a result, the current is shown to be related to the accumulation of the infinitesimal rotation of the motor, and besides the unpredictable behavior of the current is shown to be caused by the relationship. Subsequently the relationship between the current and the cutting force is identified, and it is presented that control of machined surface using the current of the feed motor at rest is possible.

  • PDF

An Adaptive Fuzzy Backstepping Approach to Robust Tracking Control of a Single-Link Flexible Joint Robot (적응형 퍼지 백스테핑 방식을 이용한 단일축 유연관절 로봇의 강인 제어)

  • 김은태;이희진
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.1-12
    • /
    • 2004
  • This paper presents an adaptive fuzzy backstepping (AFB) controller for a single-link flexible joint robot in the Presence of Parametric uncertainties and external disturbances. Adaptive fuzzy logic systems are used as universal approximators to counteract the model uncertainties coming from robot dynamics and to compensate for the nonlinearities coming from adaptive backstepping method. The approach suggested herein does not require neither an additional supervisory nor a robustifying controller and guarantees that tracking error is uniformly ultimately bounded (UUB) within a sufficiently small residual set. Finally, a simulation result is given to demonstrate the robust tracking performance of proposed design method.

Evaluation of LMS Algorithms Family for Active Noise Control Barriers (능동형 방음벽 개발을 위한 LMS 알고리즘군(群) 분석)

  • Cha, Sang-Gon;Shin, Eun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1493-1496
    • /
    • 2011
  • Research results for LMS-based algorithms performances using real records of the traffic noise are discussed. The various algorithms based on LMS method are studied regarding their convergence speed and noise reduction index. Most effective algorithms are chosen for implementation in the active noise control barriers. The optimal step size, and number of adaptive filter taps are addressed during parametric study of the algorithms.

  • PDF

Tuned liquid column dampers with adaptive tuning capacity for structural vibration control

  • Shum, K.M.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.543-558
    • /
    • 2005
  • The natural frequencies of a long span bridge vary during its construction and it is thus difficult to apply traditional tuned liquid column dampers (TLCD) with a fixed configuration to reduce bridge vibration. The restriction of TLCD imposed by frequency tuning requirement also make it difficult to be applied to structure with either very low or high natural frequency. A semi-active tuned liquid column damper (SATLCD), whose natural frequency can be altered by active control of liquid column pressure, is studied in this paper. The principle of SATLCD with adaptive tuning capacity is first introduced. The analytical models are then developed for lateral vibration of a structure with SATLCD and torsional vibration of a structure with SATLCD, respectively, under either harmonic or white noise excitation. The non-linear damping property of SATLCD is linearized by an equivalent linearization technique. Extensive parametric studies are finally carried out in the frequency domain to find the beneficial parameters by which the maximum vibration reduction can be achieved. The key parameters investigated include the distance from the centre line of SATLCD to the rotational axis of a structure, the ratio of horizontal length to the total length of liquid column, head loss coefficient, and frequency offset ratio. The investigations demonstrate that SATLCD can provide a greater flexibility for its application in practice and achieve a high degree of vibration reduction. The sensitivity of SATLCD to the frequency offset between the damper and structure can be improved by adapting its frequency precisely to the measured structural frequency.