• Title/Summary/Keyword: parameters of rock classification

Search Result 49, Processing Time 0.026 seconds

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

An Evaluation of Rock Mass Rating System As Design Aids in Korea (RMR 분류법의 국내 적용성 평가)

  • 구호본;배규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.209-216
    • /
    • 1994
  • Rock mass classifications have played an indispensable role in underground construction for several decades. An important issue in rock mass classifications is the selection of the parameters of greatest significance. There appears to be no single parameter that can fully describe a jointed rock mass for underground construction design. In this paper. We find some problems shen applied rock mass classification for underground construction in domestic, analyze the most significant parameters and parameters correlation influencing the behavior of a rock mass, and suggest the Simplied Rock Mass Rating system based on RMR method for effective underground supports.

  • PDF

Analysis of Acquaintance Relations Between Parameters of RMR and Q Rock Mass Classification System (RMR 및 Q 암반분류법의 평가 요소간 친숙도 관계 분석)

  • Synn, Joong-Ho;Park, Chul-Whan;SunWoo, Choon
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.408-417
    • /
    • 2008
  • Rock mass classification methods such as RMR and Q system have different characteristics each other in parameters considered and applications, and so it is very important to prescribe the relationship between parameters for the analysis of correlativity of these methods. With the Held data of RMR and Q estimation in road construction sites, the acquaintance relations between RMR and Q of rock mass classifications are analyzed. The correlation equations between parameters of RMR and Q, matrix of correlation coefficients and the generalized form of acquaintance relation matrix are derived. This acquaintance relation matrix can be further extended to the form of generalized acquaintance relation network, and could be used to analyze the correlativity and to enhance the utility of common rock mass classification methods.

Comparison of Rock Mass Classification Methods (암반등급 분류법들의 비교연구)

  • Park Chul-Whan;Park Chan;Synn Joong-Ho
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.203-208
    • /
    • 2006
  • This report is to introduce an article to compare 3 kinds of methods as RMR, Q-system and RMi published in Tunnel and Tunnelling Technology 2003. As rock mass classification is applied to estimate the amount of the support as an empirical design method, an attempt has been made to evaluate the parameters for classifications and their variations by Professor Nilsen and his team in Norway. Representability and reproducibility in measuring the field parameters are discussed and sensitivity of rating values in the three methods is also analyzed in this research. Although some parameters have high variation in rating among the 5 observers, the rock mass class has been found to be quite similar.

Critical review of RMR and Q-system of rockmass classification for the design of underground openings

  • Rao, Karanam U M;Choon, Sun-Woo;Chung, So-Keul;Choi, Sung-O
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2004.04a
    • /
    • pp.219-229
    • /
    • 2004
  • In this article a comprehensive review of the Rock Mass Rating and Q-rockmass classification systems is made with reference to their scope with in the constraints of underground mining operations. The modifications suggested by KIGAM for both the RMR and Q for the calculation of a safe unsupported span were tested for Daesung and Pyunghae underground limestone mines. Even though the suggested modifications were site specific, the additional parameters considered in the above classification systems are very significant for a design of stable underground openings, considering any general mining conditions.

  • PDF

Suggestion of Charts and Equations Estimating the Strength Parameters of Rock Mass Using the Rock Mass Classification Value (RMC 값을 이용한 암반의 강도정수 값 추정도표 및 추정식의 제안)

  • Kim, Min-Kwon;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.73-85
    • /
    • 2014
  • The strength parameters used in rock mass design are mainly estimated by equations using Hoek-Brown failure criterion because the tests to obtain the values are limited and expensive. To estimate the strength parameters, the Hoek-Brown failure criterion should be transformed to the Mohr-Coulomb failure criterion. But the processes are more or less cumbersome due to the several stages including the computation and the analyzing steps. In this study, several rock states of various conditions were modeled and then the strength parameters were estimated using the Hoek-Brown failure criterion. Thereafter by analyzing the results, some charts and equations estimating the strength parameters through only one step or easily in the field using the values of RMC, the uniaxial compressive strength and the rock constant ($m_i$), were suggested. And then the suggested method was compared and discussed with the existing method.

A Study on the Characteristics of Rock Mass by GSI in Limestone Mine (석회석 광산에서의 GSI 분류법에 의한 암반특성연구)

  • ;Kaynnam U. M. Rao
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.86-96
    • /
    • 2004
  • Rock mass classification methods such as RMR, Q system and GSl have been widely adopted with certain modifications for the design of mine openings. The GSI system is the only rock mass classification system that is related to Mohr-Coulomb and Hoek-Brown strength parameters and gives a simple method to calculate the engineering properties of rock masses which can be useful input parameters for a numerical analysis. A detailed surveying for GSI mapping as well as far calculating RMR values was undertaken at Daesung and Pyunghae underground limestone mining sites. RQD values were determined for row locations in these two mining sites. Based on GSI values and intact rock strength properties, the rock mass strength modulus of elasticity as well as the Mohr-Coulomb strength parameter c$_{m}$ and $\phi$$_{m}$ were determined. GSI and RMR are correlated.

The Petrological and Geomechanical Studies of Rock Masses in the Site Area of the 3rd and 4th Seoul Subway Lines for an Engineering Classification of Rock Masses (서울 지하철(地下鐵) 부지일대(敷地一帶) 암석(岩石)의 암석학적(岩石學的) 및 암석역학적(岩石力學的) 기준설정(基準設定)을 위(爲)한 연구(硏究))

  • Kim, Ok Joon;Lee, Dai Sung;Jeong, Bong Il
    • Economic and Environmental Geology
    • /
    • v.17 no.1
    • /
    • pp.57-78
    • /
    • 1984
  • The object of this study is to offer the standarized data for the design and calculating engineering cost of the rock excavation an the construction of the 3rd and 4th Seoul Subway lines From Jnauary to March in 1983, this study was carried out by the both methods of the field and laboratary studies. In the field, the geological survey in the entire area of Seoul City and sites on the subway lines were carried out and also a site measure of uniaxial compressional strength of rock masses by using Schmidt hammer was done. The labartory studies were carsied out by a study of preuions surveyes, microscopic studies of the mineral composition and degree of weathering of rocks, and measure of uniaxial compressional strengths Finally an engineering classification of each rock masses of South Africa council for Scientific and Industrial Research, CSIR, after Bieniawski, 1974. was done. In this method of classification 6 parameters such as strength of intact rock material, rock quality designation, spacing of fractures, condition of fractures, groundwater conditions, and the effect of fracture strike and dip orientation in tunnelling were used to evaluate rating of each rock mass.

  • PDF

The effect of in-situ stress parameters and metamorphism on the geomechanical and mineralogical behavior of tunnel rocks

  • Kadir Karaman
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.213-222
    • /
    • 2024
  • Determination of jointed rock mass properties plays a significant role in the design and construction of underground structures such as tunneling and mining. Rock mass classification systems such as Rock Mass Rating (RMR), Rock Mass Index (RMi), Rock Mass Quality (Q), and deformation modulus (Em) are determined from the jointed rock masses. However, parameters of jointed rock masses can be affected by the tunnel depth below the surface due to the effect of the in situ stresses. In addition, the geomechanical properties of rocks change due to the effect of metamorphism. Therefore, the main objective of this study is to apply correlation analysis to investigate the relationships between rock mass properties and some parameters related to the depth of the tunnel studied. For this purpose, the field work consisted of determining rock mass parameters in a tunnel alignment (~7.1 km) at varying depths from 21 m to 431 m below ground surface. At the same excavation depths, thirty-seven rock types were also sampled and tested in the laboratory. Correlations were made between vertical stress and depth, horizontal/vertical stress ratio (k) and depth, k and Em, k and RMi, k and point load index (PLI), k and Brazilian tensile strength (BTS), Em and uniaxial compressive strength (UCS), UCS and PLI, UCS and BTS. Relationships were significant (significance level=0.000) at the confidence interval of 95% (r = 0.77-0.88) between the data pairs for the rocks taken from depths greater than 166 m where the ratio of horizontal to vertical stress is between 0.6 and 1.2. The in-situ stress parameters affected rock mass properties as well as metamorphism which affected the geomechanical properties of rock materials by affecting the behavior of minerals and textures within rocks. This study revealed that in-situ stress parameters and metamorphism should be reviewed when tunnel studies are carried out.

Suggestion of New Rock Classification Method Using the Existing Classification Method (기존의 암반분류법의 조합에 의한 새로운 암반평가법의 제안)

  • SunWoo Choon;Jung Yong-Bok
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Rock mass classification systems such as RMR and Q system have been widely served as a simple empirical approach for the design of various rock mass structures in the stage of site survey as well as under the construction. For the RQD determination, the boring is partially carried out and what is more, the survey boring is not normally carried out under construction. Therefore RQD is frequently determined by empirical method or indirect method. Since it is difficult to determine the discontinuity characteristics such as RQD, spacing, persistence, filling and so on, it is essential to develop suitable and simple systems without drilled core and a cert 없 n number of representative parameters. One of the primary objectives of the classification systems for a practicing engineer has been to make it simple to use as a preliminary design tool for the structures in rock mass. In the present study, the modifications for both the RMR and GSI system are suggested by authors to introduce new classification system as well as to improve the scope of some of the existing classification systems for a practicing engineer.