• Title/Summary/Keyword: parameterization model

Search Result 159, Processing Time 0.022 seconds

Local Parameterization of Polygonal Models Using Projection Level Set (투영 등위 집합을 이용한 다면체 모델의 부분 매개 변수화)

  • Lee, Yeon-Joo;Cha, Deuk-Hyun;Chang, Byung-Joon;Ihm, In-Sung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.12
    • /
    • pp.641-655
    • /
    • 2007
  • Parameterization has been one of very important research subjects in several application areas including computer graphics. In the parameterization research, the problem of mapping 3D polygonal model to 2D plane has been studied frequently, but the previous methods often fail to handle complicated shapes of polygonal surfaces effectively as well as entail distortion between the 3D and 2D spaces. Several attempts have been made especially to reduce such distortion, but they often suffer from the problem when an arbitrary rectangular surface region on 3D model is locally parameterized. In this paper, we propose a new local parameterization scheme based on the projection level set method. This technique generates a series of equi-distanced curves on the surface region of interest, which are then used to generate effective local parameterization information. In this paper, we explain the new technique in detail and show its effectiveness by demonstrating experimental results.

Sensitivity Analysis of Near Surface Air Temperature to Land Cover Change and Urban Parameterization Scheme Using Unified Model (통합모델을 이용한 토지피복변화와 도시 모수화 방안에 따른 지상 기온 모의성능 민감도 분석)

  • Hong, Seon-Ok;Byon, Jae-Young;Park, HyangSuk;Lee, Young-Gon;Kim, Baek-Jo;Ha, Jong-Chul
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.427-441
    • /
    • 2018
  • This study examines the impact of the urban parameterization scheme and the land cover change on simulated near surface temperature using Unified Model (UM) over the Seoul metropolitan area. We perform four simulations by varying the land cover and the urban parameterization scheme, and then compare the model results with 46 AWS observation data from 2 to 9 August 2016. Four simulations were performed with different combination of two urban parameterization schemes and two land cover data. Two schemes are Best scheme and MORUSES (Met Office Reading Urban Surface Exchange Scheme) and two land cover data are IGBP (International Geosphere and Biosphere Programme) and EGIS (Environmental Geographic information service) land cover data. When land use data change from IGBP to EGIS, urban ratio over the study area increased by 15.9%. The results of the study showed that the higher change in urban fraction between IGBP and EGIS, the higher the improvement in temperature performance, and the higher the urban fraction, the higher the effect of improving temperature performance of the urban parameterization scheme. 1.5-m temperature increased rapidly during the early morning due to increase of sensible heat flux in EXP2 compared to CTL. The MORUSES with EGIS (EXP3) provided best agreement with observations and represents a reasonable option for simulating the near surface temperature of urban area.

Parameterization Model for Damaging Ultraviolet-B Irradiance

  • Kim, Yoo-Keun;Lee, Hwa-Woon;Moon, Yun-Seob
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.1
    • /
    • pp.41-56
    • /
    • 1999
  • Since UV-B radiation measuring networks have not been established, numerical models which calculate the flux from other readily available meteorological measurements may play an important role. That is, such a problem can be solved by using parameterization models such as two stream approximation, the delta-Eddington method, doubling method, and discrete ordinate method. However, most UV-B radiative transfer models have not been validated with measurements, because such models are not intended as practical computational schemes for providing surface estimates of UV-B radiation. The main concern so far has been to demonstrate model sensitivity for cloudless skies. In particular, few have been concerned with real cloud information. Clouds and aerosols have generally been incorporated as constituents of particular atmospheric layers with specified optical depths and scattering properties. The parameterization model presented here is a combination of a detailed radiative transfer algorithm for a coludless sky radiative process and a more approximate scheme to handle cloud effects. The model input data requires a daily measurement of the total ozone amount plus a daily record of the amount and type of cloud in the atmosphere. Measurements for an examination of the models at the Department of Atmospheric Sciences, Pusan National University have been takenfrom February, 1995. These models can be used to calculate present and future fluxes where measurements have not been taken, and construct climatologies for the period before ozone depletion began.

  • PDF

A Watermarking Algorithm of 3D Mesh Model Using Spherical Parameterization (구면 파라미터기법을 이용한 3차원 메쉬 모델의 워더마킹 알고리즘)

  • Cui, Ji-Zhe;Kim, Jong-Weon;Choi, Jong-Uk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.1
    • /
    • pp.149-159
    • /
    • 2008
  • In this paper, we propose a blind watermarking algorithm of 3d mesh model using spherical parameterization. Spherical parameterization is a useful method which is applicable to 3D data processing. Especially, orthogonal coordinate can not analyse the feature of the vertex coordination of the 3D mesh model, but this is possible to analyse and process. In this paper, the centroid center of the 3D model was set to the origin of the spherical coordinate, the orthogonal coordinate system was transformed to the spherical coordinate system, and then the spherical parameterization was applied. The watermark was embedded via addition/modification of the vertex after the feature analysis of the geometrical information and topological information. This algorithm is robust against to the typical geometrical attacks such as translation, scaling and rotation. It is also robust to the mesh reordering, file format change, mesh simplification, and smoothing. In this case, the this algorithm can extract the watermark information about $90{\sim}98%$ from the attacked model. This means it can be applicable to the game, virtual reality and rapid prototyping fields.

Effects of vertical resolution on a parameterization of convective gravity waves (대류 중력파 항력 모수화에 미치는 연직 해상도의 영향)

  • Choi, Hyun-Joo;Chun, Hye-Yeong
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.121-136
    • /
    • 2008
  • We investigate effects of vertical resolution on a parameterization of convective gravity waves (SGWDC) developed in Song and Chun (2005) through offline and online tests of the SGWDC parameterization. For offline tests, numerical simulations of the SGWDC parameterization with different number of vertical levels (L66, L117, L168, L219 and L270) from the surface to 120 km are performed for two different saturation methods. It is found that the wave momentum forcing is overestimated or underestimated in the SGWDC parameterization with different vertical resolutions, depending on the saturation methods. The increase of the vertical resolution modifies the magnitude and distribution of the wave momentum forcing in the parameterization, and this is mainly due to modification of wave saturation levels in the wave saturation processes. However the wave momentum forcing converges in the parameterizations with vertical resolutions higher than L168. For online test, the SGWDC parameterizations with vertical resolutions of L66 and L164 are implemented into a climate model with vertical resolution of L66, separately. In the L164 experiment, the wave momentum forcing decreases in the mid-latitude winter mesosphere in July and zonal mean flows are more realistically reproduced in the tropical regions compared with those in the L66 experiment. These results demonstrate that the wave momentum forcing calculated in the parameterization is sensitive to the vertical resolution, and the implementation of the SGWDC parameterization into high resolution models is required for realistic representation of the gravity wave momentum forcing in large-scale numerical models.

Development of Spatial Data Management System to Estimate Regional Evapotranspiration Using a Land Surface Parameterization

  • Kim, Kwang-Soo;Chung, U-Ran
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2003.09a
    • /
    • pp.58-61
    • /
    • 2003
  • A land surface parameterization has been used to simulate influences of the terrestrial surface on the atmosphere. A simple biosphere model (SiB2), one of land surface parameterization, calculates exchange of radiation, sensible heat, latent heat, and momentum between the surface and the atmosphere (Sellers, et al., 1996).(omitted)

  • PDF

Volume Mesh Parameterization for Topological Solid Sphere Models (구형 위상구조 모델에 대한 볼륨메쉬 파라메터화)

  • Kim, Jun-Ho;Lee, Yun-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.106-114
    • /
    • 2010
  • Mesh parameterization is the process of finding one-to-one mapping between an input mesh and a parametric domain. It has been considered as a fundamental tool for digital geometric processing which is required to develop several applications of digital geometries. In this paper, we propose a novel 3D volume parameterization by means that a harmonic mapping is established between a 3D volume mesh and a unit solid cube. To do that, we firstly partition the boundary of the given 3D volume mesh into the six different rectangular patches whose adjacencies are topologically identical to those of a surface cube. Based on the partitioning result, we compute the boundary condition as a precondition for computing a volume mesh parameterization. Finally, the volume mesh parameterization with a low-distortion can be accomplished by performing a harmonic mapping, which minimizes the harmonic energy, with satisfying the boundary condition. Experimental results show that our method is efficient enough to compute 3D volume mesh parameterization for several models, each of whose topology is identical to a solid sphere.

Impact of Cumulus Parameterization Schemes on the Regional Climate Simulation for the Domain of CORDEX-East Asia Phase 2 Using WRF Model (WRF 모형의 적운 모수화 방안이 CORDEX 동아시아 2단계 지역의 기후 모의에 미치는 영향)

  • Choi, Yeon-Woo;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.105-118
    • /
    • 2017
  • This study assesses the performance of the Weather Research and Forecasting (WRF) model in reproducing regional climate over CORDEX-East Asia Phase 2 domain with different cumulus parameterization schemes [Kain-Fritch (KF), Betts-Miller-Janjic (BM), and Grell-Devenyi-Ensemble (GD)]. The model is integrated for 27 months from January 1979 to March 1981 and the initial and boundary conditions are derived from European Centre for Medium-Range Weather Forecast Interim Reanalysis (ERA-Interim). The WRF model reasonably reproduces the temperature and precipitation characteristics over East Asia, but the regional scale responses are very sensitive to cumulus parameterization schemes. In terms of mean bias, WRF model with BM scheme shows the best performance in terms of summer/winter mean precipitation as well as summer mean temperature throughout the North East Asia. In contrast, the seasonal mean precipitation is generally overestimated (underestimated) by KF (GD) scheme. In addition, the seasonal variation of the temperature and precipitation is well simulated by WRF model, but with an overestimation in summer precipitation derived from KF experiment and with an underestimation in wet season precipitation from BM and GD schemes. Also, the frequency distribution of daily precipitation derived from KF and BM experiments (GD experiment) is well reproduced, except for the overestimation (underestimation) in the intensity range above (less) then $2.5mm\;d^{-1}$. In the case of the amount of daily precipitation, all experiments tend to underestimate (overestimate) the amount of daily precipitation in the low-intensity range < $4mm\;d^{-1}$ (high-intensity range > $12mm\;d^{-1}$). This type of error is largest in the KF experiment.

Voxel-wise UV parameterization and view-dependent texture synthesis for immersive rendering of truncated signed distance field scene model

  • Kim, Soowoong;Kang, Jungwon
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • In this paper, we introduced a novel voxel-wise UV parameterization and view-dependent texture synthesis for the immersive rendering of a truncated signed distance field (TSDF) scene model. The proposed UV parameterization delegates a precomputed UV map to each voxel using the UV map lookup table and consequently, enabling efficient and high-quality texture mapping without a complex process. By leveraging the convenient UV parameterization, our view-dependent texture synthesis method extracts a set of local texture maps for each voxel from the multiview color images and separates them into a single view-independent diffuse map and a set of weight coefficients for an orthogonal specular map basis. Furthermore, the view-dependent specular maps for an arbitrary view are estimated by combining the specular weights of each source view using the location of the arbitrary and source viewpoints to generate the view-dependent textures for arbitrary views. The experimental results demonstrate that the proposed method effectively synthesizes texture for an arbitrary view, thereby enabling the visualization of view-dependent effects, such as specularity and mirror reflection.

Study of an AI Model for Airfoil Parameterization and Aerodynamic Coefficient Prediction from Image Data (이미지 데이터를 이용한 익형 매개변수화 및 공력계수 예측을 위한 인공지능 모델 연구)

  • Seung Hun Lee;Bo Ra Kim;Jeong Hun Lee;Joon Young Kim;Min Yoon
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The shape of an airfoil is a critical factor in determining aerodynamic characteristics such as lift and drag. Aerodynamic properties of an airfoil have a decisive impact on the performance of various engineering applications, including airplane wings and wind turbine blades. Therefore, it is essential to analyze the aerodynamic characteristics of airfoils. Various analytical tools such as experiments, computational fluid dynamics, and Xfoil are used to perform these analyses, but each tool has its limitation. In this study, airfoil parameterization, image recognition, and artificial intelligence are combined to overcome these limitations. Image and coordinate data are collected from the UIUC airfoil database. Airfoil parameterization is performed by recognizing images from image data to build a database for deep learning. Trained model can predict the aerodynamic characteristics not only of airfoil images but also of sketches. The mean absolute error of untrained data is 0.0091.