• Title/Summary/Keyword: parameterization

Search Result 326, Processing Time 0.037 seconds

An Improved Method for Phenology Model Parameterization Using Sequential Optimization (순차적인 최적화 기법에 의한 생물계절모형 모수추정 방식 개선)

  • Yun, Kyungdahm;Kim, Soo-Hyung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.304-308
    • /
    • 2014
  • Accurate prediction of peak bloom dates (PBD) of flowering cherry trees is critical for organizing local cherry festivals and other associated cultural and economic activities. A two-step phenology model is commonly used for predicting flowering time depending on local temperatures as a result of two consecutive steps followed by chill and heat accumulations. However, an extensive computation requirement for parameter estimation has been a limitation for its practical use. We propose a sequential parameterization method by exploiting previously unused records of development stages. With an extra constraint formed by heat accumulation between two intervening stages, each parameter can then be solved sequentially in much shorter time than the brute-force method. The result was found to be almost identical to the previous solution known for cherry trees (Prunus ${\times}$ yedoensis) in the Tidal Basin, Washington D.C.

3D Data Dimension Reduction for Efficient Feature Extraction in Posture Recognition (포즈 인식에서 효율적 특징 추출을 위한 3차원 데이터의 차원 축소)

  • Kyoung, Dong-Wuk;Lee, Yun-Li;Jung, Kee-Chul
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.435-448
    • /
    • 2008
  • 3D posture recognition is a solution to overcome the limitation of 2D posture recognition. There are many researches carried out for 3D posture recognition using 3D data. The 3D data consist of massive surface points which are rich of information. However, it is difficult to extract the important features for posture recognition purpose. Meanwhile, it also consumes lots of processing time. In this paper, we introduced a dimension reduction method that transform 3D surface points of an object to 2D data representation in order to overcome the issues of feature extraction and time complexity of 3D posture recognition. For a better feature extraction and matching process, a cylindrical boundary is introduced in meshless parameterization, its offer a fast processing speed of dimension reduction process and the output result is applicable for recognition purpose. The proposed approach is applied to hand and human posture recognition in order to verify the efficiency of the feature extraction.

Impact of Cumulus Parameterization Schemes with Different Horizontal Grid Sizes on Prediction of Heavy Rainfall (적운 모수화 방안이 고해상도 집중호우 예측에 미치는 영향)

  • Lee, Jae-Bok;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.391-404
    • /
    • 2011
  • This study investigates the impact of cumulus parameterization scheme (CPS) with different horizontal grid sizes on the simulation of the local heavy rainfall case over the Korean Peninsula. The Weather Research and Forecasting (WRF)-based real-time forecast system of the Joint Center for High-impact Weather and Climate Research (JHWC) is used. Three CPSs are used for sensitivity experiments: the BMJ (Betts-Miller-Janjic), GD (Grell-Devenyi ensemble), and KF (Kain-Fritsch) CPSs. The heavy rainfall case selected in this study is characterized by low-level jet and low-level transport of warm and moist air. In 27-km simulations (DM1), simulated precipitation is overestimated in the experiment with BMJ scheme, and it is underestimated with GD scheme. The experiment with KF scheme shows well-developed precipitation cells in the southern and the central region of the Korean Peninsula, which are similar to the observations. All schemes show wet bias and cold bias in the lower troposphere. The simulated rainfall in 27-km horizontal resolution has influence on rainfall forecast in 9-km horizontal resolution, so the statements on 27-km horizontal resolution can be applied to 9-km horizontal resolution. In the sensitivity experiments of CPS for DM3 (3-km resolution), the experiment with BMJ scheme shows better heavy rainfall forecast than the other experiments. The experiments with CPS in 3-km horizontal resolution improve rainfall forecasts compared to the experiments without CPS, especially in rainfall distribution. The experiments with CPS show lower LCL(Lifted Condensation Level) than those without CPS at the maximum rainfall point, and weaker vertical velocity is simulated in the experiments with CPS compared to the experiments without CPS. It means that CPS suppresses convective instability and influences mainly convective rainfall. Consequently, heavy rainfall simulation with BMJ CPS is better than the other CPSs, and even in 3-km horizontal resolution, CPS should be applied to control convective instability. This conclusion can be generalized by conducting more experiments for a variety of cases over the Korean Peninsula.

Influence of Gas Transfer Velocity Parameterization on Air-Sea $CO_2$ Exchange in the East (Japan) Sea

  • Hahm, Do-Shik;Rhee, Tae-Siek;Kang, Dong-Jin;Kim, Kyung-Ryul
    • Journal of the korean society of oceanography
    • /
    • v.38 no.3
    • /
    • pp.135-142
    • /
    • 2003
  • Gas flux across the air-sea interface is often determined by the product of gas transfer velocity k) and the difference of concentrations in water and air. k is primarily controlled by wind stress on the air-sea interface, thus all parameterizations ofk involve wind speed, a rough indicator of wind stress, as one of the independent variables. We attempted to explore the spatial and temporal variations of k in the East (Japan) Sea using a database from Naet al. (1992). Three different parameterizations were employed: those of Liss and Merlivat (1986), Wanninkhof(1992), and Wanninkhofand McGillis (1999). The strong non-linear dependence of k on wind speed in all parameterizations leads us to examine the effect of time resolution, in which the binned wind speeds are averaged, on the estimation ofk. Two time resolutions of 12 hours (short-term) and one month (long-term) were chosen. The mean wind speeds were fed into the given parameterizations, resulting in six different transfer velocities of $CO_2$ ranging from 12 to 32 cm/h. In addition to the threefold difference depending on the choice of parameterization, the long-term average of wind speed results in a value ofk up to 20% higher than the short-term (12 hours) average of wind speed due to the non-Rayleigh wind distribution in the East (Japan) Sea. While it is not known which parameterization is more reliable, this study proposes that the time-averaged wind speed should not be used in areas where non-Ralyleigh wind distribution prevails such as the East (Japan) Sea. The net annual $CO_2$ flux was estimated using the value of k described above and the monthly ${\Delta}fCO_2$ of Oh et al. (1999); this ranges from 0.034 to 0.11 Gt-C/yr.

Sensitivity Test of the Parameterization Methods of Cloud Droplet Activation Process in Model Simulation of Cloud Formation (구름방울 활성화 과정 모수화 방법에 따른 구름 형성의 민감도 실험)

  • Kim, Ah-Hyun;Yum, Seong Soo;Chang, Dong Yeong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.211-222
    • /
    • 2018
  • Cloud droplet activation process is well described by $K{\ddot{o}}hler$ theory and several parameterizations based on $K{\ddot{o}}hler$ theory are used in a wide range of models to represent this process. Here, we test the two different method of calculating the solute effect in the $K{\ddot{o}}hler$ equation, i.e., osmotic coefficient method (OSM) and ${\kappa}-K{\ddot{o}}hler$ method (KK). To do that, each method is implemented in the cloud droplet activation parameterization module of WRF-CHEM (Weather Research and Forecasting model coupled with Chemistry) model. It is assumed that aerosols are composed of five major components (i.e., sulfate, organic matter, black carbon, mineral dust, and sea salt). Both methods calculate similar representative hygroscopicity parameter values of 0.2~0.3 over the land, and 0.6~0.7 over the ocean, which are close to estimated values in previous studies. Simulated precipitation, and meteorological variables (i.e., specific heat and temperature) show good agreement with reanalysis. Spatial patterns of precipitation and liquid water path from model results and satellite data show similarity in general, but on regional scale spatial patterns and intensity show some discrepancy. However, meteorological variables, precipitation, and liquid water path do not show significant differences between OSM and KK simulations. So we suggest that the relatively simple KK method can be a good alternative to the OSM method that requires various information of density, molecular weight and dissociation number of each individual species in calculating the solute effect.

Effects of Resolution, Cumulus Parameterization Scheme, and Probability Forecasting on Precipitation Forecasts in a High-Resolution Limited-Area Ensemble Prediction System

  • On, Nuri;Kim, Hyun Mee;Kim, SeHyun
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.623-637
    • /
    • 2018
  • This study investigates the effects of horizontal resolution, cumulus parameterization scheme (CPS), and probability forecasting on precipitation forecasts over the Korean Peninsula from 00 UTC 15 August to 12 UTC 14 September 2013, using the limited-area ensemble prediction system (LEPS) of the Korea Meteorological Administration. To investigate the effect of resolution, the control members of the LEPS with 1.5- and 3-km resolution were compared. Two 3-km experiments with and without the CPS were conducted for the control member, because a 3-km resolution lies within the gray zone. For probability forecasting, 12 ensemble members with 3-km resolution were run using the LEPS. The forecast performance was evaluated for both the whole study period and precipitation cases categorized by synoptic forcing. The performance of precipitation forecasts using the 1.5-km resolution was better than that using the 3-km resolution for both the total period and individual cases. The result of the 3-km resolution experiment with the CPS did not differ significantly from that without it. The 3-km ensemble mean and probability matching (PM) performed better than the 3-km control member, regardless of the use of the CPS. The PM complemented the defect of the ensemble mean, which better predicts precipitation regions but underestimates precipitation amount by averaging ensembles, compared to the control member. Further, both the 3-km ensemble mean and PM outperformed the 1.5-km control member, which implies that the lower performance of the 3-km control member compared to the 1.5-km control member was complemented by probability forecasting.

Impact of Boundary Conditions and Cumulus Parameterization Schemes on Regional Climate Simulation over South-Korea in the CORDEX-East Asia Domain Using the RegCM4 Model (CORDEX 동아시아 영역에서 경계조건 및 적운모수화방안이 RegCM4를 이용한 남한 지역 기후모의에 미치는 영향 분석)

  • Oh, Seok-Geun;Suh, Myoung-Seok;Myoung, Ji-Su;Cha, Dong-Hyun
    • Journal of the Korean earth science society
    • /
    • v.32 no.4
    • /
    • pp.373-387
    • /
    • 2011
  • In this study, four types of sensitivity experiments (EG, EE, NG, NE; E: ERA-Interim, N: NCEP/DOE2, G: Grell scheme, E: Emanuel scheme) were performed to evaluate the simulation skills of RegCM4 released in July 2010 over the CORDEX (COordinated Regional Downscaling EXperiment) East Asia domain based on the combinations of boundary conditions (BC: ERA-Interim, NCEP/DOE2) and the cumulus parameterization schemes (CPS: Grell, Emanuel) for the 1989. The surface air temperature and precipitation data observed by the Korea Meteorological Adminstration were used to validate the simulation results over South Korea. The RegCM4 well simulates the seasonal and spatial variations of temperature but it fails to capture the seasonal and spatial variations of precipitation without consideration of the BC and CPS. Especially the simulated summer precipitation amount is significantly less in EG, NG, and NE experiments. But the seasonal variation of precipitation including summer precipitation is relatively well simulated in the EE experiment. The EE experiment shows a better skill in the seasonal march of East Asia summer monsoon, distribution of precipitation intensity and frequency than other experiments. In general, the skills of RegCM4 for temperature and precipitation are better during winter than summer, and in Emanuel than Grell schemes. The simulation results are more impacted by cumulus parameterization schemes than boundary conditions.

A study on the H_$\infty$ robust controller of induction motors (유도전동기의 H_$\infty$강인제어에 관한 연구)

  • 김민찬;박승규;진승오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1448-1451
    • /
    • 1997
  • In this paper, a speed control of nin-servo induction motor is considered. In this case, it is difficult to satisfy precise control performance. SO H.inf. robust controller is designed for this problem by usign polynomial approach and Youla parameterization.

  • PDF