• Title/Summary/Keyword: parameter estimation mode

Search Result 126, Processing Time 0.037 seconds

SPMSM Mechanical Parameter Estimation Using Sliding-Mode Observer and Adaptive Filter (슬라이딩 모드 관측기와 적응 필터를 이용한 SPMSM 기계 파라미터 추정)

  • Kim, Hyoung-Woo;Choi, Joon-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • We propose a mechanical parameter estimation algorithm for surface-mounted permanent magnet synchronous motors (SPMSMs) using a sliding-mode observer (SMO) and an adaptive filter. The SMO estimates system disturbances in real time, which contain the information on mechanical parameters. A desirable feature that distinguishes the proposed estimation algorithm from other existing mechanical parameter estimators is that the adaptive filter estimates electromagnetic torque to improve the estimation performance. Moreover, the SMO acts as a low-pass filter to suppress the chattering effect, which enables the smooth output signals of the SMO. We verify the mechanical parameter estimation performance for SPMSM by conducting extensive experiments for the proposed algorithm.

A Study on the Real-Time Parameter Estimation of DURUMI-II for Control Surface Fault Using Flight Test Data (Longitudinal Motion)

  • Park, Wook-Je;Kim, Eung-Tai;Song, Yong-Kyu;Ko, Bong-Jin
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.410-418
    • /
    • 2007
  • For the purpose of fault detection of the primary control surface, real-time estimation of the longitudinal stability and control derivatives of the DURUMI-II using the flight data is considered in this paper. The DURUM-II, a research UAV developed by KARI, is designed to have split control surfaces for the redundancy and to guarantee safety during the fault mode flight test. For fault mode analysis, the right elevator was deliberately fixed to the specified deflection condition. This study also mentions how to implement the multi-step control input efficiently, and how to switch between the normal mode and the fault mode during the flight test. As a realtime parameter estimation technique, Fourier transform regression method was used and the estimated data was compared with the results of the analytical method and the other available method. The aerodynamic derivatives estimated from the normal mode flight data and the fault mode data are compared and the possibility to detect the elevator fault by monitoring the control derivative estimated in real time by the computer onboard was discussed.

A Fast Parameter Estimation of Time Series Data Using Discrete Fourier Transform (이산푸리에변환과 시계열데이터의 고속 파라미터 추정)

  • Shim, Kwan-Shik;Nam, Hae-Kon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.7
    • /
    • pp.265-272
    • /
    • 2006
  • This paper describes a method of parameter estimation of time series data using discrete Fourier transform(DFT). DFT have been mainly used to precisely and rapidly obtain the frequency of a signal. In a dynamic system, a real part of a mode used to learn damping characteristics is a more important factor than the frequency of the mode. The parameter estimation method of this paper can directly estimate modes and parameters, indicating the characteristics of a dynamic system, on the basis of the Fourier transform of the time series data. Real part of a mode estimates by subtracting a frequency of the Fourier spectrum corresponding to 0.707 of a magnitude of the peak spectrum from a peak frequency, or subtracting a frequency of the power spectrum corresponding to 0.5 of the peak power spectrum from a peak frequency, or comparing the Fourier(power) spectrum ratio. Also, the residue and phase of time signal calculate by simple equation with the real part of the mode and the power spectrum that have been calculated. Accordingly, the proposed algorithm is advantageous in that it can estimate parameters of the system through a single DFT without repeatedly calculating a DFT, thus shortening the time required to estimate the parameters.

Parameter Estimation Method of Low-Frequency Oscillating Signals Using Discrete Fourier Transforms

  • Choi, Joon-Ho;Shim, Kwan-Shik;Nam, Hae-Kon;Lim, Young-Chul;Nam, Soon-Ryul
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.163-170
    • /
    • 2012
  • This paper presents a DFT (Discrete Fourier Transform) based estimation algorithm for the parameters of a low-frequency oscillating signal. The proposed method estimates the parameters, i.e., the frequency, the damping factor, the mode amplitude, and the phase, by fitting a discrete Fourier spectrum with an exponentially damped cosine function. Parameter estimation algorithms that consider the spectrum leakage of the discrete Fourier spectrum are introduced. The multi-domain mode test functions are tested in order to verify the accuracy and efficiency of the proposed method. The results show that the proposed algorithms are highly applicable to the practical computation of low-frequency parameter estimations based on DFTs.

Hybrid Fuzzy Controller Based on Control Parameter Estimation Mode Using Genetic Algorithms (유전자 알고리즘을 이용한 제어파라미터 추정모드기반 HFC)

  • Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2545-2547
    • /
    • 2000
  • In this paper, a hybrid fuzzy controller using genetic algorithm based on parameter estimation mode to obtain optimal control parameter is presented. First, The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PID's output in steady state by a fuzzy variable, namely, membership function of weighting coefficient. Second, genetic algorithms is presented to automatically improve the performance of hybrid fuzzy controller utilizing the conventional methods for finding PID parameters and estimation mode of scaling factor. The algorithms estimates automatically the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules according to the rate of change and limitation condition of control input. Computer simulations are conducted to evaluate the performance of proposed hybrid fuzzy controller. ITAE, overshoot and rising time are used as a performance index of controller.

  • PDF

A Novel Sliding Mode Observer for State of Charge Estimation of EV Lithium Batteries

  • Chen, Qiaoyan;Jiang, Jiuchun;Liu, Sijia;Zhang, Caiping
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1131-1140
    • /
    • 2016
  • A simple design for a sliding mode observer is proposed for EV lithium battery SOC estimation in this paper. The proposed observer does not have the limiting conditions of existing observers. Compared to the design of previous sliding mode observers, the new observer does not require a solving matrix equation and it does not need many observers for all of the state components. As a result, it is simple in terms of calculations and convenient for engineering applications. The new observer is suitable for both time-variant and time-invariant models of battery SOC estimation, and the robustness of the new observer is proved by Liapunov stability theorem. Battery tests are performed with simulated FUDS cycles. The proposed observer is used for the SOC estimation on both unchanging parameter and changing parameter models. The estimation results show that the new observer is robust and that the estimation precision can be improved base on a more accurate battery model.

A Study on the Parameter Estimation of DURUMI-II for the Fixed Right Elevator Using Flight Test Data

  • Park Wook-Je;Kim Eung-Tai;Seong Kie-Jeong;Kim Yeong-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1224-1231
    • /
    • 2006
  • The stability and control derivatives of DURUMI-lI UAV using the flight test are obtained. The flight test data is gathered from the normal flight condition (normal mode) and the flight condition assumed as the right elevator fixed (fault mode). Using real-time parameter estimation techniques, applied to Fourier transform regression method, simulates the aircraft motion. From the result, the fault of control surface is to be detected. In this paper, the results of the real- time parameter estimation techniques are compared with the results of the Advanced Aircraft Analysis (AAA). Using the aerodynamic derivatives, it provides the base line of normal/failure for the control surface by using the on-line parameter estimation of Fourier transform regression. In flight, this approach maybe helpful to detect and isolate the fault of primary control surface. It is explained how to perform the flight condition assumed as the right elevator fixed in the flight test. Also, it is mentioned how to switch between the normal flight condition and the assumed fault flight condition.

Imperfection Parameter Observer and Drift Compensation Controller Design of Hemispherical Resonator Gyros

  • Pi, Jaehwan;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.379-386
    • /
    • 2013
  • The hemispherical resonator gyroscope is a type of vibratory gyroscope, which can measure angle or angular rate, based on its operating mode. This paper deals with the case when the hemispherical resonator gyroscope is operated in angle measurement mode. In angle measurement mode, the resonator pattern angle precesses, with respect to the external rotation input, by the principle of the Coriolis effect, so that the external rotation can be estimated, by measuring the amount of precession angle. However, this pattern angle drifts, due to the manufacturing error of the resonator. Since the drift effect causes degradation of the angle estimation performance of the resonator, the corresponding drift compensation control should be performed, to enhance the estimation performance. In this paper, a mathematical model of the hemispherical resonator gyro is first introduced. By using the mathematical model, a nonlinear observer for imperfection parameter estimation, and the corresponding compensation controller are designed to operate hemispherical resonator gyros, as angle measurement sensors.

Fast Estimation of Low Frequency Parameter for Real-Time Analysis in Wide Area Systems (광역계통의 실시간해석을 위한 고속 저주파수 파라미터 추정)

  • Kim, Eun-Ju;Shim, Kwan-Shik;Kim, Yong-Gu;Kim, Eui-Sun;Nam, Hae-Kon;Lim, Young-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1078-1086
    • /
    • 2009
  • This paper presents a Fourier based algorithm for estimating the parameters of the low frequency oscillating modes. The proposed methods estimates various parameters(frequency, damping factor, mode magnitude, phase) by fitting Fourier spectrum and phase with a damped exponential cosine function. Dominant frequency is selected by taking frequency corresponding to the peak spectrum, and damping factor is estimated using the left/right spectra of Fourier spectrum. In addition, mode magnitude is calculated by the normalized peak spectrum, and phase is estimated from spectrum phase. Also, we introduce an accuracy index in order to determine the accuracy of the estimated parameters, and the index is calculated using the deviations of the peak spectrum and the left/right spectra. The parameter estimation methods proposed in this paper include very simple arithmetical processes, so the algorithms are simple and the calculation speed is very fast. The proposed methods are applied to test functions with two dominant modes. The results show that the proposed methods are highly applicable to low frequency parameter estimation.

Application of Perturbation Estimation using Fractional-Order Hold Technique to Sliding Mode Control (Fractional-Order Hold기법을 이용한 섭동 추정기의 슬라이딩 모드 제어에 적용)

  • Nam Yun Joo;Lee Yuk-Hyung;Park Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.121-128
    • /
    • 2006
  • This paper deals with the application of enhanced perturbation estimation (SMCEPE) to sliding mode control of a dynamic system in the presence of perturbations including external disturbances, unpredictable parameter variations, and unstructured dynamics. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE), the proposed one can offer robust control performances under serious control conditions, such as fast dynamic perturbations and slow loop-closure speeds, without a priori knowledge on upper bounds of perturbations. The perturbation estimator in SHCEPE also has more adaptability owing to the fractional-order hold technique. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a two-link robot manipulator.