• Title/Summary/Keyword: parameter characterization

Search Result 262, Processing Time 0.033 seconds

Hysteresis characterization and identification of the normalized Bouc-Wen model

  • Li, Zongjing;Shu, Ganping
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.209-219
    • /
    • 2019
  • By normalizing the internal hysteresis variable and eliminating the redundant parameter, the normalized Bouc-Wen model is considered to be an improved and more reasonable form of the Bouc-Wen model. In order to facilitate application and further research of the normalized Bouc-Wen model, some key aspects of the model need to be uncovered. In this paper, hysteresis characterization of the normalized Bouc-Wen model is first studied with respect to the model parameters, which reveals the influence of each model parameter to the shape of the hysteresis loops. The parameter identification scheme is then proposed based on an improved genetic algorithm (IGA), and verified by experimental test data. It is proved that the proposed method can be an efficacious tool for identification of the model parameters by matching the reconstructed hysteresis loops with the target hysteresis loops. Meanwhile, the IGA is shown to outperform the standard GA. Finally, a simplified identification method is proposed based on parameter sensitivity, which indicates that the efficiency of the identification process can be greatly enhanced while maintaining comparable accuracy if the low-sensitivity parameters are reasonably restricted to narrower ranges.

Experimental Model of Frequency-Variant Transmission Line Parameter for High-Speed Signal Propagation Characterization (고속 신호의 전파 특성화를 위한 주파수 종속 전송선 파라미터의 실험적 모델)

  • Kim, Hyewon;Eo, Yungseon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.73-80
    • /
    • 2013
  • In this paper, an experimental circuit model for an accurate high-frequency characterization of transmission line is proposed. Inherent resonance effects during measurements make it difficult to determine characteristic impedance and propagation constant at the resonance frequencies corresponding to the line length. Thus, resonance-effect-free transmission line parameter determination technique based on the physical insight and theory is proposed. Then, by using the parameters high-frequency circuit model is proposed for high-speed signal propagation characterization. The proposed frequency-variant transmission line model is verified with measurement and it can be usefully exploited in high-speed signal propagation characterization.

Diffraction Corrections for Second Harmonic Beam Fields and Effects on the Nonlinearity Parameter Evaluation

  • Jeong, Hyunjo;Cho, Sungjong;Nam, Kiwoong;Lee, Janghyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.112-120
    • /
    • 2016
  • The nonlinearity parameter is frequently measured as a sensitive indicator in damaged material characterization or tissue harmonic imaging. Several previous studies have employed the plane wave solution, and ignored the effects of beam diffraction when measuring the non-linearity parameter ${\beta}$. This paper presents a multi-Gaussian beam approach to explicitly derive diffraction corrections for fundamental and second harmonics under quasilinear and paraxial approximation. Their effects on the nonlinearity parameter estimation demonstrate complicated dependence of ${\beta}$ on the transmitter-receiver geometries, frequency, and propagation distance. The diffraction effects on the non-linearity parameter estimation are important even in the nearfield region. Experiments are performed to show that improved ${\beta}$ values can be obtained by considering the diffraction effects.

Experimental Characterization-Based Signal Integrity Verification of Sub-Micron VLSI Interconnects

  • Eo, Yung-Seon;Park, Young-Jun;Kim, Yong-Ju;Jeong, Ju-Young;Kwon, Oh-Kyong
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.5
    • /
    • pp.17-26
    • /
    • 1997
  • Interconnect characterization on a wafer level was performed. Test patterns for single, two-coupled, and triple-coupled lines ere designed by using 0.5$\mu\textrm{m}$ CMOS process. Then interconnect capacitances and resistances were experimentally extracted by using tow port network measurements, Particularly to eliminate parasitic effects, the Y-parameter de-embedding was performed with specially designed de-embedding patterns. Also, for the purpose of comparisons, capacitance matrices were calculated by using the existing CAD model and field-solver-based commercial simulator, METAL and MEDICI. This work experimentally verifies that existing CAD models or parameter extraction may have large deviation from real values. The signal transient simulation with the experimental data and other methodologies such as field-solver-based simulation and existing model was performed. as expected, the significantly affect on the signal delay and crosstalk. The signal delay due to interconnects dominates the sub-micron-based a gate delay (e.g., inverter). Particularly, coupling capacitance deviation is so large (about more than 45% in the worst case) that signal integrity cannot e guaranteed with the existing methodologies. The characterization methodologies of this paper can be very usefully employed for the signal integrity verification or he electrical design rule establishments of IC interconnects in the industry.

  • PDF

Measurement of Nonlinear Elastic Constants and Material Characterization by Using Nonlinear Elasto-acoustics (비선형 탄성-음향 효과를 이용한 비선형 탄성 계수의 계측과 금속재료의 특성평가)

  • ;;Sato, Takuso
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1971-1979
    • /
    • 1993
  • In this paper, a new method to estimate stress status in metal nondestructively by using nonlinear dependency of sound speed on stress is proposed. For the purpose, equivalent nonlinear elastic constants up to fourth-order are introduced and a new characteristic parameter given as a function of these constants is presented. And a concrete system to measure the characteristic parameter is constructed by electromagnetic pumping wave and ultrasonic probing wave system. Some experimental results for Al alloy showed that the estimation of stress status in metal is possible by the proposed method.

Study of the equivalent circuit model on LTCC embedded inductors (구조 변화에 따른 LTCC 매립형 인덕터 등가모델 연구)

  • Oh, Chang-Hoon;Shin, Dong-Wook;Lee, Kyu-Bok;Kim, Jong-Kyu;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.678-681
    • /
    • 2002
  • In this paper, Characterization for several 3-D embedded passive elements with different structures was performed. The equivalent circuit optimization for embedded inductor was performed by HSPICE simulation software. After extracting each parameter values, the difference of parameter from each structure was examined. From this work, effective characterization of passive devices with similar structure will be possible.

  • PDF

Indoor RSSI Characterization using Statistical in Wireless Sensor Network (무선 센서네트워크에서의 통계적 방법에 의한 실내 RSSI 측정)

  • Pu, Chuan-Chin;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2172-2178
    • /
    • 2007
  • In indoor environment, the combination of the two variations, large scale(path loss) and small scale(fading), leads to non-linear variation of RSSI(received signal strength indicator) values as distance varied. This has been one of the difficulties for indoor location estimation. This paper presents new findings on indoor RSSI characterization for more accurate model building. Experiments have been done statistically to find overall trend of RSSI values at different places and times within the same room. From experiments, it has been shown that the variation of RSSI values can be determined by both spatial and temporal factors. These two factors are directly indicated by the two main parameters of path loss model. The results show that all sensor nodes which are located at different places share the same characterization value for the temporal parameter whereas different values for the spatial parameters. The temporal parameter also has a large scale variation effect that is slowly time varying due to environmental changes. Using this relationship, the characterization for location estimation can be more efficient and accurate.

Biomechanical Characterization with Inverse FE Model Parameter Estimation: Macro and Micro Applications (유한요소 모델 변수의 역 추정법을 이용한 생체의 물성 규명)

  • Ahn, Bum-Mo;Kim, Yeong-Jin;Shin, Jennifer H.;Kim, Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1202-1208
    • /
    • 2009
  • An inverse finite element (FE) model parameter estimation algorithm can be used to characterize mechanical properties of biological tissues. Using this algorithm, we can consider the influence of material nonlinearity, contact mechanics, complex boundary conditions, and geometrical constraints in the modeling. In this study, biomechanical experiments on macro and micro samples are conducted and characterized with the developed algorithm. Macro scale experiments were performed to measure the force response of porcine livers against mechanical loadings using one-dimensional indentation device. The force response of the human liver cancer cells was also measured by the atomic force microscope (AFM). The mechanical behavior of porcine livers (macro) and human liver cancer cells (micro) were characterized with the algorithm via hyperelastic and linear viscoelastic models. The developed models are suitable for computing accurate reaction force on tools and deformation of biomechanical tissues.