• Title/Summary/Keyword: parameter analysis

Search Result 7,553, Processing Time 0.04 seconds

Hall and Ion-Slip effects on magneto-micropolar fluid with combined forced and free convection in boundary layer flow over a horizontal plate

  • Seddeek, M.A.;Abdelmeguid, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.51-73
    • /
    • 2004
  • A boundary layer analysis is used to study the effects of Hall and ion-slip currents on the steady magneto-micropolar of a viscous incompressible and electrically conducting fluid over a horizontal plate. By means of similarity solutions, deviation of fundamental equations on the assumption of small magnetic Reynolds number are solved numerically by using the shooting method. The effects of various parameters of the problem, e.g. the magnetic parameter, Hall parameter, ion-slip parameter, buoyancy parameter and material parameter are discussed and shown graphically.

  • PDF

On the Validity of SN Ratio in Parameter Design

  • Kim, Sang-Ik
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.1
    • /
    • pp.96-107
    • /
    • 1993
  • In parameter design Taguchi analyzed a statistic which he called signal-to-noise(SN) ratio by using the experimental design technique. However he gave no justification for using SN ratios in the optimization procedure of parameter design. In this paper we discuss the validity of such SN ratios as proper statistics to be analyzed in parameter design. Moreover, using the real empirical data we examine the appropriateness of SN ratios, and we explain how transformation technique can be applied in parameter design as an alternative method of analysis.

  • PDF

Sensitivity Analysis of the Runoff Model Parameter for the Optimal Design of Hydrologic Structures (수공구조물의 적정설계를 위한 유출모형 매개변수의 민감도 분석)

  • Lee, Jung-Hoon;Kim, Mun-Mo;Yeo, Woon-Kwang
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.755-758
    • /
    • 2008
  • Currently, the increased run-off and the shortened arrival time are one of the causes of the city environmental disasters in urbanization. Therefore, it is necessary to properly design the hydrologic structures, but it is very difficult to forecast the values necessary to design from the planning stage. Moreover, as the parameter is changed due to the urban development, it is difficult not only to analyze the run-off influences but also to find the related studies and literatures. The purpose of this study is to utilize the results as the important basic data of the hydrologic structures, its proper design and run-off influences through the sensibility analysis of the model parameter variables. In this study, the absolute and relative sensibility analysis method were used to find out the correlation through the sensibility analysis of the topology and hydrology parameters. Especially, in this study, the changes in the run-off amount and volume were calculated according to increase/decrease in CN, the coefficient of discharge, and the empirical formula is prepared and proposed through the regressive analysis among the parameters. In the meantime, the parameter sensibility analysis was performed through the simulation HEC-HMS that is used and available in Korea. From the results of this study, it was found that the run-off amount is increased about by 10% when the CN value is increased by 5% before and after the development through the HEC-HMS simulation and data analysis. As long as there will be additional data collection analysis and result verification, and continuous further studies to find out the parameters proper to the domestic circumstances, it is expected to considerably contribute to the proper design of the hydrologic structures with respect to the ungauged basin.

  • PDF

Separation Effect Analysis for Rainfall Data (강우자료의 분리효과)

  • 김양수;허준행
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.73-83
    • /
    • 1993
  • This study focuses on the separation effect analysis of rainfall data for 2-parameter log-normal, 3-parameter log-normal, type-extreme value, 2-parameter gamma, 3-parameter gamma, log-Pearson type-III, and general extreme value distribution functions. Difference in the relationship between the mean and standard deviation of skewness for historical data and relations derived from 7 distribution functions are analyzed suing the Monte Carlo experiment. The results show that rainfall data has the separation effect for 6 distribution functions except 3-parameter gamma distribution function.

  • PDF

Analysis of Induction Machine Flux Observer (유도전동기 자속추정기의 특성해석)

  • Nam Hyun-Taek;Lee Kyung-Joo;Choi Jong-Woo;Kim Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.7-10
    • /
    • 2001
  • To obtain a high performance in a direct vector controlled induction machine, it is essential to correct estimation of rotor flux. The accuracy of flux observers for induction machines inherently depends on parameter sensitivity. This paper presents an analysis method for conventional flux observers using Parameter Sensitivity. The Parameter sensitivity is defined as the ratio of the percentage change in the system transfer function to the percentage change of the parameter variation. We define the ratio between real flux and estimated flux as the transfer function, and analyzed a parameter sensitivity of this transfer function.

  • PDF

A PARAMETER ESTIMATION METHOD FOR MODEL ANALYSIS

  • Oh Se-Young;Kwon Sun-Joo;Yun Jae-Heon
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.373-385
    • /
    • 2006
  • To solve a class of nonlinear parameter estimation problems, a method combining the regularized structured nonlinear total least norm (RSNTLN) method and parameter separation scheme is suggested. The method guarantees the convergence of parameters and has an advantages in reducing the residual norm over the use of RSNTLN only. Numerical experiments for two models appeared in signal processing show that the suggested method is more effective in obtaining solution and parameter with minimum residual norm.

A Study on the Life Characteristic of Rodless Cylinder (로드리스 실린더의 수명 특성에 관한 연구)

  • Lee, C.S.;Lim, J.H.;Kang, S.B.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • Pneumatic cylinders are classified into rod-type pneumatic cylinders and rodless pneumatic cylinders depending on the presence of the rod. Rodless cylinders have a constant area and have no deflection. Rodless cylinders are widely used in automatic systems requiring high-speed performance and high-precision transportation. However, the research of the pneumatic cylinder has been focused on the structure and life characteristics. In this research, aging characteristics and shape parameter analysis which are related to the lifetime were investigated. By conducting the lifetime tests with two different materials for the transfer plate, the failure mode and lifetime characteristics were analyzed. By the Anderson-Darling (A-D) verification based on the complete data set, the analysis results of lifetime distribution, shape parameter, and scale parameter were provided.

Elastic Critical Loads of Tapered Compression Members with Simply Supported Ends (단순지지 변단면 압축재의 임계하중)

  • Song, Chang-Young
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.5
    • /
    • pp.83-87
    • /
    • 2007
  • Elastic critical loads of sinusoidally tapered bars with simply supported ends are determined by finite element method. The parameters considered in the analysis are taper parameter (=a) and section property parameter (=m). The analysis result for the special case of porismatic bar (a=0) shows good agreement with the existing value. The changes of the critical load coefficients are expressed by an algebraic equation. The coefficients appearing in the equations are determined by regression technique. The critical loads coefficients estimated by the proposed equations reveal little errors when they are compared with those determined by finite element method.

  • PDF

Bayesian Estimation of Three-parameter Bathtub Shaped Lifetime Distribution Based on Progressive Type-II Censoring with Binomial Removal

  • Chung, Younshik
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2747-2757
    • /
    • 2018
  • We consider the MLE (maximum likelihood estimate) and Bayesian estimates of three-parameter bathtub-shaped lifetime distribution based on the progressive type II censoring with binomial removal. Jung, Chung (2018) proposed the three-parameter bathtub-shaped distribution which is the extension of the two-parameter bathtub-shaped distribution given by Zhang (2004). Jung, Chung (2018) investigated its properties and estimations. The maximum likelihood estimates are computed using Newton-Raphson algorithm. Also, Bayesian estimates are obtained under the balanced loss function using MCMC (Markov chain Monte Carlo) method. In particular, BSEL (balanced squared error loss) function is considered as a special form of balanced loss function given by Zellner (1994). For comparing theirs MLEs with the corresponding Bayes estimates, some simulations are performed. It shows that Bayes estimates is better than MLEs in terms of risks. Finally, concluding remarks are mentioned.

Weibull Statistical Analysis of Elevated Temperature Tensile Strength and Creep Rupture Time in Stainless Steels (스테인리스 강의 고온 인장강도와 크리프 파단시간의 와이블 통계 해석)

  • Jung, W.T.;Kim, Y.S.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.56-62
    • /
    • 2010
  • This paper is concerned with the stochastic nature of elevated temperature tensile strength and creep rupture time in 18Cr-8Ni stainless steels. The Weibull statistical analysis using the NRIM data sheet has been performed to investigate the effects of variability of the elevated temperature tensile strength and creep rupture time on the testing temperature. From those investigations, the distributions of temperature tensile strength and creep rupture time were well followed in 2-parameter Weibull. The shape parameter and scale parameter for the Weibull distribution of tensile strength were decreased with increasing the testing temperature. For the creep rupture time, generally, the shape parameter were decreased with increasing the testing temperature.