• Title/Summary/Keyword: paralytic shellfish toxin

Search Result 44, Processing Time 0.018 seconds

Studies for Reestabilishment of Approval Toxin Amount in Paralytic Shellfish Poison-Infested Shellfish 5. Comparison of Toxicity and Toxin Composition of Paralytic Shellfish Poison between Blue mussel, Mytilus edulis and Oyster, Crassostrea gigas

  • Shin, Il-Shik;Kim, Young-Man
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.4
    • /
    • pp.287-292
    • /
    • 2000
  • The toxicity and toxin composition between blue mussel, Mytilus edulis and oyster, Crassostrea gigas collected at Woepori in Ko je island in South Coast of Korea in 1996 and 1997 were compared. The highest toxicity score was about 10 times higher in blue mussel than oyster (blue mussel, 8,670 $\mu\textrm{g}$; oyster, 860$\mu\textrm{g}$ in 1996, blue mussel, 5,657 $\mu\textrm{g}$/100g in 1997). The blue mussel also retained its toxicity for slightly longer period than oyster. In the both shellfish, PSP was composed almost exclusively of C toxicity (Cl and C2, 20~65%) and gonyautoxins (GTXl, 2, 3, and 4, 38~78%). In the early period of toxin accumulation, the ratio of 11$\beta$-epimer toxins (C2, GTX4) whose amount was 25~56 mole% (5th March to 12th April in 1996) and 25~80 mole% (18th March to 7th April in 1997), were higher than that of 11-epimer toxins (Cl, GTX2) whose amount was 41~57 mol%(27th May to 3rd June in 1996) and 25~56 mole% (29th April to 12th May in 1997), became higher than that of 11-epimer toxins. The toxin compositions in the both samples changed on a daily basis, presumably owing to metabolism of the toxin in the bivalves.

  • PDF

Paralytic Shellfish Toxin Composition and Intoxication of Scallops (Patinopecten yessoensis) in Kangnung Coastal Waters of East Sea in 1997 (강릉 연안산 참가리비의 PSP 독화 및 독조성)

  • JEON Joong-Kyun;HAN Myung-Soo;PARK Young Je;YOON Moon-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.813-816
    • /
    • 1998
  • Toxicity and toxin compositions of wild and cultured scallops (Patinopecten yessoensis), collected from coastal waters near Kangnung of East Sea, were examined from January to June, 1997. By mouse bioassay methods, the toxicity was detected with low toxicity of $2 MU\;g^{-1}$, and paralytic shellfish poisoning (PSP) toxin was detected in the specimens from 30 April to 15 May by HPLC. GTXs and PXs were identified as the major toxin components.

  • PDF

Comparison of MBA and HPLC Post-column Oxidation Methods for the Quantification of Paralytic Shellfish Poisoning Toxins

  • Yu, Hongsik;Lim, Keun Sik;Song, Ki Cheol;Lee, Ka Jeong;Lee, Mi Ae;Kim, Ji Hoe
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.159-164
    • /
    • 2013
  • The mouse bioassay and high performance liquid chromatography (HPLC) post-column oxidation method are different methods of quantifying paralytic shellfish poisoning toxins. In this study, we compared their ability to accurately quantify the toxicity levels in two types of field sample (oysters and mussels) with different toxin profiles for routine regulatory monitoring. A total of 72 samples were analyzed by both methods, 44 of which gave negative results, with readings under the limit of detection of the mouse bioassay ($40{\mu}g/100g$ saxitoxin [STX] eq). In 14 oysters, the major toxin components were gonyautoxin (GTX) 1, -2, -3, -4, -5, decarbamoylgonyautoxin-2 (dcGTX2), and decarbamoylsaxitoxin (dcSTX), while 14 mussels tested positive for dcSTX, GTX2, -3, -4, -5, dcGTX2, neosaxitoxin (NEO), STX, and dcSTX. When the results obtained by both methods were compared in two matrices, a better correlation ($r^2=0.9478$) was obtained for mussels than for oysters ($r^2=0.8244$). Additional studies are therefore needed in oysters to investigate the differences in the results obtained by both methods. Importantly, some samples with toxin levels around the legal limit gave inconsistent results using HPLC-based techniques, which could have a strong economic impact due to enforced harvest area closure. It should therefore be determined if all paralytic shellfish poisoning toxins can be quantified accurately by HPLC, and if the uncertainties of the method lead to doubts regarding regulatory limits.

Paralytic Shellfish Poison Profile in Commercial Shellfishes (시판 중인 패류의 마비성 패류독 특성)

  • Jang, Jun-Ho;Yun, So-Mi;Lee, Jong-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.6
    • /
    • pp.924-928
    • /
    • 2005
  • Toxin profiles of the paralytic shellfish poison (PSP) detected from domestic shellfishes collected at the market and imported. shellfishes were invested by fluorometric HPLC. Total 9 components in PSP were analysed from the imported ark shell, such as saxitoxin (STX), decarbamoylsaxitoxin (dcSTX), gonyautoxin (GTX) - 1,2,3,4,5, Cl and C2. Among those toxins, 7 components except for GTX1,4 were detected from domestic shellfishes and showed different toxin contents and toxin compositions by species. Only C group toxin (Cl +2) contained in short necked clam and hard clam $(0.06\~0.56\;nmole/g)$ which living under soil but, in the blue mussels and oysters which cultured in the open sea water, showed more higher toxicity and complicate toxin compositions. Toxin compositions in bloody clam and purplish washington clam were very different in some samples even in same species. GTX4 and GTX5 were higher in imported scallop and STX was higher in imported ark shell than other species.

Anatomical Distribution of Paralytic Shellfish Toxin in Bay Scallops Argopecten irradians Along the Gyeongnam Coast, Korea (경남 연안 해만 가리비(Argopecten irradians)의 부위별 마비성 패류독소 분포)

  • Kim, Dong Wook;Park, Kunbawui;Ha, Kwang Soo;Ryu, Ara;Yu, Hean Jae;Jo, Seong Hae;Jo, Sung Rae;Mok, Jong Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.3
    • /
    • pp.241-246
    • /
    • 2019
  • To understand the characteristics of paralytic shellfish poisoning in a major production area of the bay scallop Argopecten irradians in Korea, the seasonal variation and anatomical distribution of paralytic shellfish toxin (PST) were determined in bay scallops collected from the Gyeongnam coast of Korea from March to May 2018. PST levels in bay scallops in the survey area showed remarkable seasonal variation. PST was first detected at a level of 0.42 mg/kg on April 2, 2018, and the highest toxin level (3.15 mg/kg) was recorded on April 12. Among the tissues of bay scallops, the highest proportion of PST was found in the viscera ($54.9%{\pm}17.8%$), followed by the adductor ($22.8%{\pm}10.9%$), gonads ($8.9%{\pm}4.6%$), gills ($7.1%{\pm}3.7%$), and mantle ($6.3%{\pm}.8%$). In addition, with higher PST levels in the whole tissues of bay scallops, the proportion of PST in the viscera increased, whereas those in the mantle, gill, and gonad tissues decreased. In a high-toxicity group with more than 2.0 mg/kg PST in the whole tissues, the proportion of PST in the viscera was $71.8%{\pm}6.7%$.

Studies for Reestabilishment of Approval Toxin Amount in Paralytic Shellfish Poison-Infested Shellfish 1. Toxicity Change in Paralytic Shellfish Poison-Infested Blue mussel, Mytilus edulis and Oyster, Crassostrea gigas during Boiling and Canning Processes

  • KIM Young-Man;CHOI Su-Ho;KIM Sung-Joon;SUH Sang-Bok;PYUN Han-Suck;CHANG Dong-Suck;SHIN Il-Shik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.893-899
    • /
    • 1996
  • The studies on the detoxification of paralytic shellfish poison (PSP)-infested blue mussels, Mytilus edulis and oyster, Crassostrea gigas were performed for using of available processing resource. Toxic blue mussel and oysters from Nampo in Masan Bay, Hachong in Koje Bay and Woepori in Koje were used for experimental samples. The toxicity of low toxic blue mussel $(A,\;84{\mu}g/100g;\;B,\;166{\mu}g/100g;\;C,\;295{\mu}g/l00g;\;D,\;557{\mu}g/100g)$ and oyster $(740{\mu}g/100g)$ were reduced below the regulation limit of PSP $(80{\mu}g/100g)$ or undetected level by mouse bioassay after boiling at $98^{\circ}C$ for 10 min and retorting at $115^{\circ}C$ for 70 min, while the toxicity of high toxic blue mussel $(E,\;8,760{\mu}g/100g)$ remained beyond the regulation limit after boiling and retorting at same condition. These results suggested that the regulation limit of PSP could be level up from $(80{\mu}g/100g)$ to about $160{\mu}g/100g$.

  • PDF

Effects of Temperature and Salinity on the Growth and Paralytic Shellfish Toxin (PST) Production by Toxic Dinoflagellate Alexandrium pacificum (유독 와편모조류 Alexandrium pacificum의 생장과 마비성 패독 생산에 미치는 수온과 염분의 영향)

  • Li, PeiJin;Oh, Seok Jin;Kim, Seok-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.866-873
    • /
    • 2022
  • Growth rate and production of the paralytic shellfish poisoning toxin (PST) of a toxic dinoflagellate Alexandrium pacificum (LIMS-PS-2611) isolated from the southern sea of Korea, were examined under various temperatures and salinity conditions. The maximum growth rate (0.28 day-1) was observed under 25℃ and 30 psu. Optimal growth (≥ 70% of maximum growth rate) was obtained between 20~25℃ and 25~35 psu. Among the PSTs of A. pacificum, the principal toxins were C1+2 and GTX5 in N-sulfocarbamoyl toxin group, and minor components were characterized as neoSTXs in the carbamate toxin group. Maximum toxin content was observed under 20℃ and 30 psu, and the toxin content increased with the increase of salinity. Low toxin contents were measured under the temperature and salinity conditions of the maximum growth rate. Therefore, the PSP of bivalve, which occurs at a temperature range of 20-25℃ in June, might have been derived from A. pacificum.

Species classification of the toxic dinoflagellate Alexandrium tamarense and A. catenella based on their paralytic shellfish toxin profiles

  • Kim, Young-Soo;Kim, Chang-Hoon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.128-128
    • /
    • 2003
  • The annually outbreak of paralytic shellfish poisoning (PSP) were caused by toxic dinolagellate A. tamarense and A. catenella in Korea. The purpose of this study were to investigate the distribution of PSP-causative organisms, A. tamarense and A. catenella and their species classification. Sediment (Saemangeum, the south open sea) and water samples (southeastern coast) were sampled to establish clonal isolates in 2003. After isolation and purification, strains were cultured under $17^{\circ}C$, f/2 media, 14:10=L:D cycle. PST analysis and species identification were performed by HPLC-FD method and specific DNA probe, respectively. Thirty-ons strains were isolated from the Saemangeum reclamation, southeastern coast including Jinhae Bay and south open sea. PSTs were detected in all cultured strains. In eight strains from south offshore, major toxin components are GTX5, C1/2 and minors are GTX3/4, dcGTX3, neoSTX. Sixteen strains from south coastal area have GTX1/4, neoSTX, C1/2 as major toxin components and GTX2/3 as minors. Seven strains from the Saemangeum reclamation have GTX5, C1/2 as major toxin components and GTX1/2/3/4 as minors. Thus, among eight south offshore isolates, four A. tamarense have more toxic (38.31~l19.16 fmol.$cell^{-1}$) than A. catenella (3.78~13.13 fmol.$cell^{-1}$). With the previous results of different toxin composition, toxin components and toxin contents, .it is toxin profile that could used to diagnosis of regional toxic population and geographical distribution of both A. tamarense and A. catenella and their toxigenic strains.

  • PDF

Reestablishment of Approval Toxin Amount in Paralytic Shellfish Poison-Infested Shellfish 3. Thermal Resistance of Paralytic Shellfish Poison (마비성 패류독 허용기준치 재설정을 위한 연구 3. 마비성 패류독의 내열성)

  • 신일식;김영만
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.2
    • /
    • pp.143-148
    • /
    • 1998
  • The purpose of this study was to determine the kinetics of paralytic shellfish poison (PSP) destruction at various temperature. The toxic digestive gland homogenate of blue mussel (Mytilus edulis), PSP crude toxin, gonyautoxin group and saxitoxin group were heated at temperature ranging from 90 to $120^{\circ}C$, and then the toxicities were measured in samples heated for various time intervals. The rate constant (k) of the toxic digestive gland homogenate, PSP crude toxin, gonyautoxin group and saxitoxin group were $3.28{\times}10^{-2},\;1.20{\times}10^{-2},\;5.88{\times}10^{-2}\;and\;2.58{\times}10^{-2}\;at\;120^{\circ}C$, respectively. The decimal reduction time (D-value) of the toxic digestive gland homogenate, PSP crude toxin, gonyautoxin group and saxitoxin group were 70, 192, 39 and 89 at $120^{\circ}C$, respectively. These results indicate that PSP crude toxin is most heat-stable of 4 types of PSP toxins and PSP toxin are more heat-stable than food poisoning bacteria and spores. The retorting condition to reduce PSP toxicity below quarantine limit ($80\;\mu\textrm{g}/100\;g$ in Korea and America, 4 MU/g in Japan) could be calculated by rate constant. For example, the digestive gland homogenate having a initial toxicity of $200\;\mu\textrm{g}/100\;g$ could have toxicity below quarantine limit when heated at $90^{\circ}C$ for 129 min., $100^{\circ}C$ for 82 min., $110^{\circ}C$ for 48 min. and $120^{\circ}C$ for 28 min. These results suggest that commercial retorting condition ($115^{\circ}C$ for 70 min) in Korea is enough to reduce toxicity below quarantine limit from initial toxicity of $200\;\mu\textrm{g}/100\;g$. From these results, the quarantine limit of PSP-infested shellfish for canning can be level up to raw score of $200\;\mu\textrm{g}/100\;g$.

  • PDF

Saxitoxin and Its Analogues: Toxicity, Analytical Method, Occurrence and Safety Management (삭시톡신과 그 유사체: 독성, 분석법, 국내외 오염도 및 관리 동향)

  • Lee, Sang Yoo;Im, Ju Hee;Woo, So Young;Choi, Hwa Young;Park, Su Been;Yoo, Cha Nee;Chun, Hyang Sook
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.521-534
    • /
    • 2020
  • Paralytic shellfish poisoning (PSP) occurs when saxitoxin (STX), which is produced by harmful algae (dinoflagellates) and then accumulated in bivalve shellfish by filter-feeding, is consumed by humans. With recent advances in analysis technology, it has been reported that dinoflagellates also produce a variety of analogues such as the gonyautoxin (GTX) group and the N-sulfo-carbamoyl toxin (C toxin) group, in addition to STX. Accordingly, CODEX and the EFSA are stepping forward to manage STX and analogues as STX groups requiring safety management. In Korea, the occurrence of dinoflagellates producing STX analogues has already been reported, and contamination of analogues (GTX group, C toxin group) in live mussels has also been reported. In this study, in order to provide the basis for systematic monitoring and safety management of STX and analogues, their physicochemical characteristics, occurrence of dinoflagellates, toxicity and toxic equivalency factor, analytical method and occurrence were widely reviewed. This review is expected to contribute to strengthening the safety management of STX and its analogues.