• Title/Summary/Keyword: parallel-coupled

Search Result 394, Processing Time 0.024 seconds

Design of Dual-Band Pass Filter Using Parallel Coupled SIR (Parallel Coupled SIR을 이용한 이중대역 통과필터 설계 연구)

  • Kim, Koon-Tae;Paek, Hyun;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.215-218
    • /
    • 2009
  • In this paper, Dual-band bandpass filter studied design using Parallel Coupled SIR(Stepped Impedance Resonator). This Dual-band bandpass filter design SIR of half-wavelength by Parallel-coupled type that is available to RFID system and Changed structure in Meander form by size reduce. Because seen Dual-band bandpass filter is designed so that is applicable for frequency 433MHz and 2.45GHz of RFID system is very wide distance between two pass-band, establish 433MHz by fundamental frequency and controlled 2.45GHz by 2st spurious resonance frequency bandstop filter of 1st spurious resonance frequency and Parallel coupled SIR Combine to remove 1st spurious resonance frequency.

  • PDF

Analysis and Modeling of Parallel Three-Phase Boost Converters Using Three-Phase Coupled Inductor

  • Lim, Chang-Soon;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1086-1095
    • /
    • 2013
  • The main issue of parallel three-phase boost converters is reduction of the low- and high frequency circulating currents. Most present technologies concentrate on low frequency circulating current because the circulating current controller cannot mitigate the high frequency circulating current. In this paper, analytical approach of three-phase coupled inductor applied to parallel system becomes an important objective to effectively reduce the low- and high frequency circulating currents. The characteristics of three-phase coupled inductor based on a structure and voltage equations are mathematically derived. The modified voltage equations are then applied to parallel three-phase boost converters to develop averaged models in stationary coordinates and rotating coordinates. Based on the averaged modeling approach, design of the circulating current controller is presented. Simulation and experimental results demonstrate the effectiveness of the analysis and modeling for the parallel three-phase boost converters using three-phase coupled inductor.

Design of Parallel-Operated SEPIC Converters Using Coupled Inductor for Load-Sharing

  • Subramanian, Venkatanarayanan;Manimaran, Saravanan
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.327-337
    • /
    • 2015
  • This study discusses the design of a parallel-operated DC-DC single-ended primary-inductor converter (SEPIC) for low-voltage application and current sharing with a constant output voltage. A coupled inductor is used for parallel-connected SEPIC topology. Generally, two separate inductors require different ripple currents, but a coupled inductor has the advantage of using the same ripple current. Furthermore, tightly coupled inductors require only half of the ripple current that separate inductors use. In this proposed work, tightly coupled inductors are used. These produce an output that is more efficient than that from separate inductors. Two SEPICs are also connected in parallel using the coupled inductors with a single common controller. An analog control circuit is designed to generate pulse width modulation (PWM) signals and to fulfill the closed-loop control function. A stable output current-sharing strategy is proposed in this system. An experimental setup is developed for a 18.5 V, 60 W parallel SEPIC (PSEPIC) converter, and the results are verified. Results indicate that the PSEPIC provides good response for the variation of input voltage and sudden change in load.

A Equivalent Circuit for Lossless 2-Port Using Inverter and Its Application (무 손실 2-포트 회로의 인버터를 사용한 등가회로 및 응용)

  • Yang, Seong-Sik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.761-770
    • /
    • 2008
  • Impedance or admittance inverter is a conceptual 2-port device frequently used in microwave filter design. In this paper, the equivalent circuit using inverter for general loss less 2-port circuit is presented. Our equivalent circuit can be directly and easily represented with z- or y-parameters compared with the conventional methods. Based on the representation, the derived results for various coupled lines such as parallel coupled line and anti-parallel coupled lines are compared ours. In addition, the results of other workers for improvement of the distortion in frequency response of microstrip coupled line filter are derived using our representation and compared. The proposed equivalent circuit shows the difference with conventional equivalent circuit so the conventional design method can not be applied to parallel coupled line filter with our representation. So in this paper the novel design method is proposed and we showed the method yields more accurate design results.

Miniaturization of Parallel Coupled-Line Filter using Lumped Capacitors and Grounding (집중 소자 캐패시터와 접지를 이용한 평행 결합 선로 필터의 소형화 연구)

  • Myoung Seong-Sik;Yook Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.888-895
    • /
    • 2004
  • This paper proposes new miniaturization method of parallel coupled line filter by using capacitors and grounding. Proposed method can reduce resonator size by using only a small number of capacitor and grounding of parallel coupled line filter which is conventional in field of RF filters because of its design and fabrication simplicity. This paper applies the miniaturization method of transmission line and parallel coupled line to parallel coupled line filter, and presents that grounding can reduce the number of shut capacitors. Presented miniaturized method has merits of miniaturization of parallel coupled line, harmonic suppression, and improvement of high frequency skirt with harmonic suppression. For verification of proposed method, this paper presents a hairpin filter, which has 900 MHz center frequency and 10 % FBW, miniaturized to λ/4 by proposed method.

A Study on Compound Technique for Increasing the Bandwidth of Microstrip Antennas using the Paralle Coupled Lines (평행 결합 선로를 이용한 복합 광대역 기법 적용 마이크로스트립 안테나에 관한 연구)

  • 김정일;한만군;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.713-721
    • /
    • 2001
  • In this paper, parasitic patches gap-coupled microstrip antenna and stacked microstrip patch antenna combined with parallel coupled lines, which are a kind of wideband impedance matching network, are proposed to get the wider bandwidth. The iterative method using a distributed network is proposed to design the parallel coupled lines as a wideband impedance matching network. Measurements show that the proposed antennas provide wider bandwidths ~1.6 times and ~1.5 times those of conventional parasitic gap-coupled microstrip patch antenna and stacked microstrip patch antenna. In addition, measured radiation patterns show no serious variation of radiation patterns though the parallel coupled lines is added. The antenna gain is, however, lowered about 1 dB and 0.5 dB by the coupling loss in the parallel coupled lines.

  • PDF

Equivalent Circuit Design of 2.4 GHz Band LTCC Bandpass Filters Using Multilayer Inter-Digital Resonators (적층 Inter-Digital 공진기를 이용한 2.4 GHz 대역 LTCC 대역통과 여파기의 등가회로 설계)

  • Sung Gyu-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.78-83
    • /
    • 2005
  • LTCC filters have been widely used to wireless terminals. They generally adopt the multilayer structure. Some of multilayer LTCC filters are made of symmetrical parallel-coupled lines and anti-symmetrical parallel-coupled lines to reduce the length of resonators. The equivalent circuit of parallel-coupled lines was analyzed and applied to bandpass filters using multilayer parallel-coupled line resonators. The three-pole bandpass filter with the center frequency of 2.45 GHz is designed by using the proposed equivalent circuit and the measured results have good agreement with the design results.

Modified Compact Combline Filter Using Planar Parallel Coupled Structure with Extended Rejection Bandwidth

  • Kang, In-Ho;Wang, Kai;Li, Shang MIng
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.543-552
    • /
    • 2010
  • Modified compact combline bandpass filters are proposed based on the miniaturized quarter-wave transmission line which is composed of the parallel coupled line and lumped capacitors. The electrical length of the parallel coupled line in a resonator, which determines the size of combline bandpass filters, is just $5^{\circ}$ or $7^{\circ}$, resulting in a compact circuit area. The designed combline bandpass filter also has a wide upper stopband by suppressing the spurious passbands, not moving. Measured results of two fabricated filters centered at 400MHz show good agreement with the theoretical predications.

Optimal Design of Permanent Magnet Actuator Using Parallel Genetic Algorithm (병렬유전 알고리즘을 이용한 영구자석형 액추에이터의 최적설계)

  • Kim, Joong-Kyoung;Lee, Cheol-Gyun;Kim, Han-Kyun;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents an optimal design of a permanent magnet actuator(PMA) using a parallel genetic algorithm. Dynamic characteristics of permanent magnet actuator model are analyzed by coupled electromagnetic-mechanical finite element method. Dynamic characteristics of PMA such as holding force, operating time, and peak current are obtained by no load test and compared with the analyzed results by coupled finite element method. The permanent magnet actuator model is optimized using a parallel genetic algorithm. Some design parameters of vertical length of permanent magnet, horizontal length of plunger, and depth of permanent magnet actuator are predefined for an optimal design of permanent magnet actuator model. Furthermore dynamic characteristics of the optimized permanent magnet actuator model are analyzed by coupled finite element method. A displacement of plunger, flowing current of the coil, force of plunger, and velocity of plunger of the optimized permanent magnet actuator model are compared with the results of a primary permanent magnet actuator model.

Compact Dual-Band Bandpass Filter Using U-Shaped Stepped-Impedance Resonators with Parallel Coupled Structures

  • Sung, Gyuje
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.73-77
    • /
    • 2018
  • This paper proposes a dual-band bandpass filter using stepped-impedance resonators (SIRs) with parallel coupled structures. The proposed filter adopts U-shaped SIRs with parallel coupled lines (PCLs) that have interdigital and comb-line shorted ends. The central PCLs build an upper passband and a transmission zero, and the two U-shaped SIRs build a lower passband. Four resonators and coupling structures are theoretically analyzed to derive its scattering parameters. A novel dual-band bandpass filter is designed and fabricated using the induced scattering characteristics. The measured results show that the fabricated dual-band bandpass filter has an insertion loss of less than 1.02 dB in the lower band of 2.45 GHz and of 3.01 dB in the upper band of 3.42 GHz, and a band-to-band isolation of more than 40 dB, from 3.14 to 3.2 GHz.