• Title/Summary/Keyword: parallel system

Search Result 4,293, Processing Time 0.026 seconds

An Experimental Study on Mechanical Properties and Failure Behavior of Plywood (Plywood의 기계적 특성 및 파손 거동 분석에 관한 실험적 연구)

  • Cha, Seung-Joo;Kim, Jeong-Dae;Kim, Jeong-Hyeon;Oh, Hoon-Kyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.335-342
    • /
    • 2019
  • The objective of this study is to analyze the mechanical properties of plywood used as a thermal insulating material for LNG CCS (Liquefied Natural Gas, Cargo Containment System). It is created by bonding an odd number of parallel and perpendicular direction for preventing contraction and expansion of wood. Also plywood is widely used as LNG CCS insulating material because of its durability, light weight and high stiffness. Since LNG CCS is loaded with liquid cargo, the impact load by sloshing during operation and the wide temperature range (room temperature, low temperature, cryogenic temperature) exposed during loading, unloading should be considered. The thickness of the plywood which is used for the membrane type MARKIII was selected as the thickness of the test specimen. In this present study, plywood is analyzed by the fracture behavior and mechanical properties of plywood by temperature and grain direction. In addition, it is necessary to analyze the fracture shape and predict the fracture strain by using regression model because the critical load may cause cracks inside the tank, which may affect the leakage of cryogenic liquid.

Efficient Processing of Grouped Aggregation on Non-Uniformed Memory Access Architecture (비균등 메모리 접근 구조에서의 효율적인 그룹화 집단 연산의 처리)

  • Choe, Seongjun;Min, Jun-Ki
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.14-27
    • /
    • 2018
  • Recently, to alleviate the memory bottleneck problme occurred in Symmetric Multiprocessing (SMP) architecture, Non-Uniform Memory Access (NUMA) architecture was proposed. In addition, since an aggregation operator is an important operator providing properties and summary of data, the efficiency of the aggregation operator is crucial to overall performance of a system. Thus, in this paper, we propose an efficient aggregation processing technique on NUMA architecture. Our proposed technique consists of partition phase and merge phase. In the partition phase, the target relation is partitioned into several partial relations according to grouping attribute. Thus, since each thread can process aggregation operator on partial relation independently, we prevent the remote memory access during the merge phase. Furthermore, at the merge phase, we improve the performance of the aggregation processing by letting each thread compute aggregation with a local hash table as well as avoiding lock contention to merge aggregation results generated by all threads into one.

Local Silencing of Connective Tissue Growth Factor by siRNA/Peptide Improves Dermal Collagen Arrangements

  • Cho Lee, Ae-Ri;Woo, Inhae
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.711-719
    • /
    • 2018
  • BACKGROUND: Collagen organization within tissues has a critical role in wound regeneration. Collagen fibril diameter, arrangements and maturity between connective tissue growth factor (CTGF) small interfering RNA (siRNA) and mismatch scrambled siRNA-treated wound were compared to evaluate the efficacy of CTGF siRNA as a future implement for scar preventive medicine. METHODS: Nanocomplexes of CTGF small interfering RNA (CTGF siRNA) with cell penetrating peptides (KALA and $MPG^{{\Delta}NLS}$) were formulated and their effects on CTGF downregulation, collagen fibril diameter and arrangement were investigated. Various ratios of CTGF siRNA and peptide complexes were prepared and down-regulation were evaluated by immunoblot analysis. Control and CTGF siRNA modified cells-populated collagen lattices were prepared and rates of contraction measured. Collagen organization in rabbit ear 8 mm biopsy punch wound at 1 day to 8 wks post injury time were investigated by transmission electron microscopy and histology was investigated with Olympus System and TS-Auto software. CONCLUSION: CTGF expression was down-regulated to 40% of control by CTGF siRNA/KALA (1:24) complexes (p<0.01) and collagen lattice contraction was inhibited. However, down-regulated of CTGF by CTGF $siRNA/MPG^{{\Delta}NLS}$ complexes was not statistically significant. CTGF KALA-treated wound appeared with well formed-basket weave pattern of collagen fibrils with mean diameter of $128{\pm}22nm$ (n = 821). Mismatch siRNA/KALA-treated wound showed a high frequency of parallel small diameter fibrils (mean $90{\pm}20nm$, n = 563). CONCLUSION: Controlling over-expression of CTGF by peptide-mediated siRNA delivery could improve the collagen orientation and tissue remodeling in full thickness rabbit ear wound.

Effects of Bed Insert Geometry and Shape of WGS Catalysts on CO Conversion in a Fluidized Bed Reactor for SEWGS Process (SEWGS 공정을 위한 유동층 반응기에서 내부 삽입물의 모양 및 WGS 촉매의 형상이 CO 전환율에 미치는 영향)

  • Ryu, Hojung;Kim, Hana;Lee, Dongho;Bae, Dalhee;Hwang, Taeksung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.150-159
    • /
    • 2013
  • To enhance the performance of SEWGS system by holding the WGS catalyst in a SEWGS reactor using bed inserts, effects of insert geometry and shape of WGS catalysts on CO conversion were measured and investigated. Small scale fluidized bed reactor was used as experimental apparatus and WGS catalyst (particle and tablet) and sand were used as bed materials. The parallel wall type and cross type bed inserts were used to hold the WGS catalysts. The CO conversion with steam/CO ratio was determined based on the exit gas analysis. The measured CO conversion using the bed inserts showed high value comparable to physical mixing cases. Moreover, gas flow direction was confirmed by bed pressure drop measurement for each case. Most of input gas flowed through the catalyst side when we charged tablet type catalyst into the bed insert and this can cause low $CO_2$ capture efficiency because the possibility of contact between input gas and $CO_2$ absorbent is low in this case. New bed insert geometry was proposed based on the results from this study to enhance contact between input gas and WGS catalyst and $CO_2$ absorbent.

An Offloading Scheduling Strategy with Minimized Power Overhead for Internet of Vehicles Based on Mobile Edge Computing

  • He, Bo;Li, Tianzhang
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.489-504
    • /
    • 2021
  • By distributing computing tasks among devices at the edge of networks, edge computing uses virtualization, distributed computing and parallel computing technologies to enable users dynamically obtain computing power, storage space and other services as needed. Applying edge computing architectures to Internet of Vehicles can effectively alleviate the contradiction among the large amount of computing, low delayed vehicle applications, and the limited and uneven resource distribution of vehicles. In this paper, a predictive offloading strategy based on the MEC load state is proposed, which not only considers reducing the delay of calculation results by the RSU multi-hop backhaul, but also reduces the queuing time of tasks at MEC servers. Firstly, the delay factor and the energy consumption factor are introduced according to the characteristics of tasks, and the cost of local execution and offloading to MEC servers for execution are defined. Then, from the perspective of vehicles, the delay preference factor and the energy consumption preference factor are introduced to define the cost of executing a computing task for another computing task. Furthermore, a mathematical optimization model for minimizing the power overhead is constructed with the constraints of time delay and power consumption. Additionally, the simulated annealing algorithm is utilized to solve the optimization model. The simulation results show that this strategy can effectively reduce the system power consumption by shortening the task execution delay. Finally, we can choose whether to offload computing tasks to MEC server for execution according to the size of two costs. This strategy not only meets the requirements of time delay and energy consumption, but also ensures the lowest cost.

Practical Considerations in Providing End-of-Life Care for Dying Patients and Their Family in the Era of COVID-19

  • Kim, Yejin;Yoo, Shin Hye;Shin, Jeong Mi;Han, Hyoung Suk;Hong, Jinui;Kim, Hyun Jee;Choi, Wonho;Kim, Min Sun;Park, Hye Yoon;Keam, Bhumsuk
    • Journal of Hospice and Palliative Care
    • /
    • v.24 no.2
    • /
    • pp.130-134
    • /
    • 2021
  • In the era of coronavirus disease 2019 (COVID-19), social distancing and strict visitation policies at hospitals have made it difficult for medical staff to provide high-quality end-of-life (EOL) care to dying patients and their families. There are various issues related to EOL care, including psychological problems of patients and their families, difficulties in EOL decision-making, the complicated grief of the bereaved family, moral distress, and exhaustion of medical staff. In relation to these issues, we aimed to discuss practical considerations in providing high-quality EOL care in the COVID-19 pandemic. First, medical staff should discuss advance care planning as early as possible and use the parallel planning strategy. Second, medical staff should play a role in facilitating patient-family communication. Third, medical staff should actively and proactively evaluate and alleviate dying patients' symptoms using non-verbal communication. Lastly, medical staff should provide care for family members of the dying patient, who may be particularly vulnerable to post-bereavement problems in the COVID-19 era. Establishing a system of screening high-risk individuals for complicated grief and connecting them to bereavement support services might be considered. Despite the challenging and limited environment, providing EOL care is essential for patients to die with dignity in peace and for the remaining family to return to life after the loved one's death. Efforts considering the practical issues faced by all medical staff and healthcare institutions caring for dying patients should be made.

Priority-based Multi-DNN scheduling framework for autonomous vehicles (자율주행차용 우선순위 기반 다중 DNN 모델 스케줄링 프레임워크)

  • Cho, Ho-Jin;Hong, Sun-Pyo;Kim, Myung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.368-376
    • /
    • 2021
  • With the recent development of deep learning technology, autonomous things technology is attracting attention, and DNNs are widely used in embedded systems such as drones and autonomous vehicles. Embedded systems that can perform large-scale operations and process multiple DNNs for high recognition accuracy without relying on the cloud are being released. DNNs with various levels of priority exist within these systems. DNNs related to the safety-critical applications of autonomous vehicles have the highest priority, and they must be handled first. In this paper, we propose a priority-based scheduling framework for DNNs when multiple DNNs are executed simultaneously. Even if a low-priority DNN is being executed first, a high-priority DNN can preempt it, guaranteeing the fast response characteristics of safety-critical applications of autonomous vehicles. As a result of checking through extensive experiments, the performance improved by up to 76.6% in the actual commercial board.

Analysis of the effect of street green structure on PM2.5 in the walk space - Using microclimate simulation - (가로녹지 유형이 보행공간의 초미세먼지에 미치는 영향 분석 - 미기후 시뮬레이션을 활용하여 -)

  • Kim, Shin-Woo;Lee, Dong-Kun;Bae, Chae-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.4
    • /
    • pp.61-75
    • /
    • 2021
  • Roadside greenery in the city is not only a means of reducing fine dust, but also an indispensable element of the city in various aspects such as improvement of urban thermal environment, noise reduction, ecosystem connectivity, and aesthetics. However, in studies dealing with the effect of reducing fine dust through trees in existing urban spaces, microscopic aspects such as the adsorption effect of plants were dealt with, structural changes such as the width of urban buildings and streets, and the presence or absence of trees, Impact studies that reflect the actual form of In this study, the effect of greenery composition applicable to urban space on PM2.5 was simulated through the microclimate epidemiologic model ENVI-met, and field measurements were performed in parallel to verify the results. In addition, by analyzing the results of fine dust background concentration, wind speed, and leaf area index, the sensitivity to major influencing variables was tested. As a result of the study, it was confirmed that the fine dust reduction effect was the highest in the case with a high planting amount, and the reduction effect was the greatest at a low background concentration. Based on this, the cost of planting street green areas and the effect of reducing PM2.5 were compared. The results of this study can contribute as a basis for considering the effect of pedestrian space on air quality when planning and designing street green spaces.

Comparison of Occupational Stress and Health Problems between Leavers and Stayers: Focused on Novice Nurses (이직자와 재직자의 직무스트레스와 건강문제 비교: 신규간호사를 중심으로)

  • Ki, Jison;Choi-Kwon, Smi
    • Journal of Korean Biological Nursing Science
    • /
    • v.23 no.2
    • /
    • pp.91-99
    • /
    • 2021
  • Purpose: This study aimed to identify occupational stress and health problems as well as turnover reasons among leavers in novice nurses and to estimate factors which might affect turnover by comparing them to stayers. Methods: In this study, secondary analysis of data gathered from the Shift Work Nurse's Health and Turnover studies, was carried out. The data were collected from 204 stayers who have been working for 18 months since 2018 and 48 leavers who left within the same period at two tertiary hospitals in Seoul. The reasons for turnover, occupational stress, and 8 types of health problems were recorded. The data were analyzed using SAS 9.4 to obtain descriptive statistics. In parallel, Pearson's chi-squared test, Fisher's exact test, and independent t-test were also conducted. Results: The main reasons for turnover were job stress and difficult interpersonal relationships in the workplace. Occupational stress of leavers was higher than stayers, especially in the subscales of interpersonal conflict, organizational system, lack of reward, and occupational climate. Among the 8 types of health problems, the depression prevalence of leavers was higher compared to stayers and showed marginal significance. Unexpectedly, the sleep disturbance prevalence of stayers was significantly higher compared to leavers. Conclusion: To reduce the turnover rate of novice nurses, education on how to cope with occupational stress is needed. A customized program for novice nurses to overcome the difficulties of interpersonal relations would be helpful.

Thermo-Fluid Simulation for Flow Channel Design of 7kW High-Voltage Heater for Electric Vehicles (전기차용 7kW급 고전압 히터 유로 형상 설계를 위한 열유동 시뮬레이션)

  • Son, Kwon Joong
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.191-196
    • /
    • 2022
  • Unlike an international combustion engine car, a battery-powered electric vehicle requires an additional heat source for its heating system. A high-voltage coolant heater has the advantages of high efficiency and a wide operating temperature range. In its development, the geometry design of the coolant flow path is essential. This paper presents the thermal flow simulations of a 7kW high-voltage heater with symmetric serpentine flow channels arranged parallelly. The heater performance was evaluated from the simulation results in terms of the pressure and temperature differences and the flow uniformity. The proposed design showed a greater flow resistance and similar heat exchanging capability than the existing parallel serpentine design. It has the advantage of a relatively wide low-temperature surface area, where the control circuit board susceptible to high temperatures can be located.