• Title/Summary/Keyword: parallel structure analysis

Search Result 433, Processing Time 0.036 seconds

Development of educational contents for the real time monitoring by changing of hybrid vehicle driving mode (하이브리드 자동차의 주행 모드 변환에 따른 실시간 모니터링 교육용 콘텐츠 개발)

  • Lee, Joong-Soon;Son, Il-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1575-1580
    • /
    • 2011
  • A key factor in the study of hybrid vehicle is to enhance the usability of energy. The paper introduces the monitor and controlling technology of hybrid vehicle that can process the relevant information considering the structure of power system and driving strategies simultaneously, and can monitor its results. This technology, so called HEV algorithm analysis, has been applied to PRIUS THS made by Toyota Co. LTD. This model is adapted to parallel hybrid type. It has a somewhat comlex structure, but has several merits. It's energy loss is lower when conversing. and also it is easily applied to the conventional vehicle having a gasoline engine without any overall changing of its structure, and so on. This monitor and controlling technology is very useful to study on the various driving strategies of hybrid vehicle for maximizing the usability between engine and electric motor.

PSPICE circuit simulation for electrical characteristic analysis of the memristor (멤리스터의 전기적 특성 분석을 위한 PSPICE 회로 해석)

  • Kim, Boo-Kang;Park, Ho-Jong;Park, Yongsu;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1051-1058
    • /
    • 2014
  • This paper presents a Electrical characteristics of the Memristor device using the PSPICE for circuit analysis. After making macro model of the Memristor device for circuit analysis, electric characteristics of the model such as time analysis, frequency and DC analysis according to the input voltage were performed by PSPICE simulation. Also, we made simple circuits of memristor series and parallel structure and analyzed the simulated SPICE results. Finally, we made a memristor-capacitor (M-C) circuit. charge and discharge characteristics were analyzed. In case of input pulse signal of 250 Hz, the Memristor-capacitor circuit showed delay time of 0.6ms, rising time of 0.58 ms and falling time of 1.6 ms.

Analysis of the influence of existing parallel tunnels according to the location of the new tunnel (신설터널의 위치에 따른 기존 병렬터널의 영향 분석)

  • Yun, Ji-Seok;Kim, Han-Eol;Nam, Kyoung-Min;Jung, Ye-Rim;Cho, Jae-Eun;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.193-215
    • /
    • 2022
  • Recently, ground structures have reached saturation, and underground construction using underground structures such as tunnels has been in the spotlight as a way to solve increasing traffic difficulties and environmental problems. However, due to the increasing number of underground structures, close construction is inevitable for continuous underground development. When a new underground structure is constructed closely, stability may become weak due to the influence on the existing tunnel, which may cause collapse. Therefore, analyzing the stability of existing tunnels due to new structures is an essential consideration. In this study, the effect of excavating new tunnels under parallel tunnels on existing parallel tunnels was analyzed using numerical analysis. Using the Displacement Control Model (DCM), the volume loss generated during construction was simulated into three case (0.5%, 1.0%, and 1.5%). Based on the center of the pillar, the distance where the new tunnel is located was set to 5 m, 6 m, 7 m, 8 m, 9 m, and the space for each distance were set to 5 (0D1, 0.37D1, 0.75D1, 1.13D1, 1.5D1). In general, as the volume loss increased and the distance approached, the maximum displacement and angular displacement increased, and the strength/stress ratio to evaluate the stability of the pillar also decreased. As a result, when the distance between the new tunnel and the center of the pillar is 5 m, the space is 0D1, and the volume loss is 1.5%, the stability of the existing parallel tunnel is the weakest.

Design and Analysis of a Class of Fault Tolerant Multistage Interconnection Networks: the Augmented Modified Delta (AMD) Network (AMD 고장감내 다단계 상호 연결망의 설계 및 분석)

  • Kim, Jung-Sun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2259-2268
    • /
    • 1997
  • Multistage interconnection networks(MINs) provide a high-bandwidth communication between processors and/or memory modules in a cost-effective way. In this paper, we propose a class of multipath MINs, called the Augmented Modified Delta(AMD) network, and analyze its performance and reliability. The salient features of the AMD network include fault-tolerant capability, modular structure, and high performance, which are essential for real-time parallel/distributed processing environments. The class of the AMD network retains well-known characteristics of the Kappa network, but it's design procedure is more systematic. Like Delta networks, all the AMD networks are topologically equivalent with each other.

  • PDF

A Study on Acoustic Radiation Reduction of a Vibrating Panel by Using Particle Swarm Optimization Algorithm (군집행동 알고리즘을 이용한 판넬구조물의 방사소음저감에 관한 연구)

  • Jeon, Jin-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.482-490
    • /
    • 2009
  • In this paper, the author proposes a new method for acoustic radiation optimum design to minimize noise from a vibrating panel-like structure using a collaborative population-based search method called the particle swarm optimization algorithm(PSOA). The PSOA is a parallel evolutionary computation technique initially developed by Kennedy and Eberhart. The acoustic radiation optimization method based on the PSOA consists of two processes. In the first process, the acoustic radiation analysis by an integrated p-version FEM/BEM, which was developed by using MATLAB, is performed to evaluate the exterior acoustic radiation field of the panel. The second process is to search the optimum design variables: 1) Shape of Bezier curves and 2) Shape and position of ribs, to minimize noise from the panel using the PSOA. The optimization method based on the PSOA is compared to that based on the steady state genetic algorithm(SSGA) in order to verify the effectiveness and validity of the optimal solution by PSOA. Finally, it is shown that the optimal designs of the panel obtained by using the PSOA can achieve effective reductions in radiated sound power.

The Characteristics for Seepage Behaviour of Soil Structure by Modeling Tests (모형실험에 의한 토공구조물의 침투거동특성)

  • 신방웅;강종범
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.158-167
    • /
    • 1999
  • In parallel flow condition, to estimate the stability of the extended embankment constructed on a permeable foundation ground, a laboratory model test was performed due to extended materials and water level increasing velocity of a flood period. A laboratory model test was peformed for different permeability coefficients ($K_1=2.0{\times}10^{-5}cm/sec,\;K_2=1.5{\times}10^{-4}cm/sec,\;K_3=2.3{\times}10^{-3}cm/sec$) using seepage. The fluctuation of water level occurring to an extended embankment was analyzed by laboratory model tests as vary the increasing velocity of water level with 0.6cm/min, 1.2cm/min, 2.4cm/min respectively. In analysis results, the increase of water level into embankment occurs rapidly because seepage water moving along with a permeable soil flow into embankment. The larger the permeability coefficient of an extended part is the longer initial seepage distance, and the exit point of downstream slope is gradually increased and then shows unstable seepage behavior as occurring partial collapse. As the increasing velocity of water level increase, the initial seepage line is formed low, and the discharge increases. Therefore, the embankment extended by a lower permeable soil than existing embankment shows stable seepage behavior because an existing embankment plays a role as filter for an extended part.

  • PDF

Analysis on the Operational Characteristic between the Protective devices and Superconducting Fault Current Limiter with a Peak Current Limiting Function in the Power Distribution System (피크전류 제한 기능을 갖는 초전도한류기의 계통 적용에 따른 보호기기간 동작특성 분석)

  • Cho, Yong-Sun;Kim, Jin-Seok;Kim, Jae-Chul;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.75-80
    • /
    • 2012
  • In this paper, the operational characteristics due to the introduction of the superconducting fault current limiter(SFCL) with a peak current limiting function were analyzed in the power distribution system. The parallel structure of the superconducting element can operate the peak current limiting function depending on the transient amplitude of fault current. We studied the operating characteristics of the introduction of the SFCL with a peak current limiting function in the power distribution system. Furthermore, we were analyzed between the SFCL with a peak current limiting function and the protection devices in the power distribution system, through the short circuit experiments.

Fabrication of Porous Cu-Ni by Freeze Drying and Hydrogen Reduction of CuO-NiO Powder Mixture (CuO-NiO 혼합분말의 동결건조 및 수소환원에 의한 Cu-Ni 다공체 제조)

  • Seo, Han Gil;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.34-38
    • /
    • 2014
  • Cu-Ni alloys with unidirectionally aligned pores were prepared by freeze-drying process of CuO-NiO/camphene slurry. Camphene slurries with dispersion stability by the addition of oligomeric polyester were frozen at $-25^{\circ}C$, and pores in the frozen specimens were generated by sublimation of the camphene during drying in air. The green bodies were hydrogen-reduced at $300^{\circ}C$ and sintered at $850^{\circ}C$ for 1 h. X-ray diffraction analysis revealed that CuO-NiO composite powders were completely converted to Cu-Ni alloy without any reaction phases by hydrogen reduction. The sintered samples showed large and aligned parallel pores to the camphene growth direction, and small pores in the internal wall of large pores. The pore size and porosity decreased with increase in CuO-NiO content from 5 to 10 vol%. The change of pore characteristics was explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.

3-D fracture analysis of cracked aluminum plates repaired with single and double composite patches using XFEM

  • Jamal-Omidi, Majid;Falah, Mehdi;Taherifar, Davood
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.525-539
    • /
    • 2014
  • Bonded composite-patch repair has been widely used to restore or extend the service life of damaged structures due to its effectiveness as a mechanical repair technique. In this paper using extended finite element method (XFEM), three-dimensional crack models are developed to examine the fracture behavior of centrally cracked aluminum plates repaired with single and double sided composite patches. Stress intensity factor (SIF) at the crack tip is used as the fracture criterion. In this regard, the effects of the crack lengths, patch materials, orientation of plies, adhesive and patch thickness are examined to estimate the SIF of the repaired plate and the repair performance. The obtained results show that composite patches have significant effect on reduction of the SIF at the crack tip. It is also proved that using double symmetric repair, in comparison to single one, reduces considerably SIF at the crack tip. Hence, the residual strength can be improved significantly as well as fatigue life of the structure. Investigation of ply orientation effects shows SIF increase as the ply orientation is changed from $0^{\circ}$ (perpendicular to the advancing crack) to $90^{\circ}$ (parallel to the crack line). However, the effectiveness of the ply orientation depends on the loading direction and the crack direction.

Design of Trajectory Data Indexing and Query Processing for Real-Time LBS in MapReduce Environments (MapReduce 환경에서의 실시간 LBS를 위한 이동궤적 데이터 색인 및 검색 시스템 설계)

  • Chung, Jaehwa
    • Journal of Digital Contents Society
    • /
    • v.14 no.3
    • /
    • pp.313-321
    • /
    • 2013
  • In recent, proliferation of mobile smart devices have led to big-data era, the importance of location-based services is increasing due to the exponential growth of trajectory related data. In order to process trajectory data, parallel processing platforms such as cloud computing and MapReduce are necessary. Currently, the researches based on MapReduce are on progress, but due to the MapReduce's properties in using batch processing and simple key-value structure, applying MapReduce framework for real time LBS is difficult. Therefore, in this research we propose a suitable system design on efficient indexing and search techniques for real time service based on detailed analysis on the properties of MapReduce.