• Title/Summary/Keyword: parallel resonant

Search Result 258, Processing Time 0.026 seconds

A Study of the PI Controller and the PR Controller for Parallel Operation of Single-Phase AC/DC Converters (단상 AC/DC 컨버터의 병렬운전을 위한 비례 적분 제어기와 비례 공진 제어기에 관한 연구)

  • Kim, Jung-Min;Choi, Seong-Chon;Kim, Bum-Jun;Cho, Jin-Ho;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.61-62
    • /
    • 2016
  • It is the general trend that AC/DC power system topologies with various sources and loads. To control the AC/DC power system, different kind of control system are needed. This paper discusses the parallel operation of single-phase AC/DC converters using a proportional integral (PI) controller and a proportional resonant (PR) controller. The performance of PI and PR controller have been evaluated by simulation.

  • PDF

DQ Synchronous Reference Frame Model of a Series-Parallel Tuned Inductive Power Transfer System (직렬-병렬 공진 무선전력전송 시스템의 동기 좌표계 모델)

  • Noh, Eun-Chong;Lee, Sang-Min;Lee, Seung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.477-483
    • /
    • 2020
  • This study proposes a DQ synchronous reference frame model of a series-parallel tuned inductive power transfer (SP-IPT) system. The wireless power transmission system experiences control difficulty because the transmitter-side controller cannot directly measure the receiver-side load voltages and currents. Therefore, a control-oriented circuit model that shows the dynamics of the IPT system is required to achieve a well-behaved controller. In this study, an equivalent circuit model of the SP-IPT system in a synchronously rotating reference frame is proposed using the single-phase DQ transformation technique. The proposed circuit model is helpful in modeling the dynamics of the voltages and currents of the transmitter- and receiver-side resonant tanks and loads. The proposed circuit model is evaluated using frequency- and time-domain simulation results.

A Parallel Hybrid Soft Switching Converter with Low Circulating Current Losses and a Low Current Ripple

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1429-1437
    • /
    • 2015
  • A new parallel hybrid soft switching converter with low circulating current losses during the freewheeling state and a low output current ripple is presented in this paper. Two circuit modules are connected in parallel using the interleaved pulse-width modulation scheme to provide more power to the output load and to reduce the output current ripple. Each circuit module includes a three-level converter and a half-bridge converter sharing the same lagging-leg switches. A resonant capacitor is adopted on the primary side of the three-level converter to reduce the circulating current to zero in the freewheeling state. Thus, the high circulating current loss in conventional three-level converters is alleviated. A half-bridge converter is adopted to extend the ZVS range. Therefore, the lagging-leg switches can be turned on under zero voltage switching from light load to full load conditions. The secondary windings of the two converters are connected in series so that the rectified voltage is positive instead of zero during the freewheeling interval. Hence, the output inductance of the three-level converter can be reduced. The circuit configuration, operation principles and circuit characteristics are presented in detail. Experiments based on a 1920W prototype are provided to verify the effectiveness of the proposed converter.

Variable Output and Parallel Operation Control of EV Charger (전기자동차용 충전기의 가변출력 및 병렬운전 제어)

  • Lee, Sang-Hyeok;Kang, Seong-Gu;Awasthi, Prakash;Hwang, Jung-Goo;Lee, Seung-Yul;Wi, Han-Byul;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.153-160
    • /
    • 2013
  • This research paper describes the development of battery charger with a variable output voltage capacity for charging the batteries used in electrical vehicles. The voltage and current accordingly is control via the buck converter that receives three phase current at primary side and fed to bridge rectifier which is comprised of full bridge converter and HFTR(High Frequency Transformer) for isolation and a square wave AC output. The transformer primary side is in series to divide certain charging current and the secondary side is comprised of six fix transformers so that they can generate certain amount of power and various output voltage through relay connection using 6 DC outputs. Moreover, all parallel connected full bridge serial resonant converter communicate together with upper(main) controller. The constructed structure is verified by conducting the test on PSIM as well as experimentally.

Digital Load Sharing Method for Converter parallel Operation (컨버터 병렬운전을 위한 디지털 부하분담 기법)

  • Yoo, Kwang-Min;Kim, Won-Yong;Park, Seung-Hee;Lee, Dong-Hoo;Kim, Yun-Sung;Jeong, Yu-Seok;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.150-157
    • /
    • 2012
  • This paper presents CAN-based parallel-operation and load-sharing techniques for the communication server power supply. With the load information obtained through CAN communication, each modules performs its current control independently and the power unbalance caused by impedance differences of converter modules can be reduced. In conventional method, slave modules are controlled by master module. On the other hand, the proposed load share algorithm uses the Multi-Master method. Therefore, accurate load sharing can be accomplished by the reference structure of each module's average current. Each converter has two stages and it is separated into PFC, which is responsible for harmonic regulation, and LLC resonant converter, which controls output voltage. To verified the performance of the proposed method, two 2KW prototypes has been implemented and experimented.

A Study on the Affected of DC-Link Voltage Balance Control of the Vienna Rectifier Linked With the Input Series Output Parallel LLC Converter (직렬 입력 병렬 출력 연결된 LLC 컨버터를 갖는 비엔나 정류기의 DC 링크 전압 평형 제어에 관한 연구)

  • Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.205-213
    • /
    • 2021
  • Due to the advantage of reducing the voltage applied to the switch semiconductor, the input series and output parallel combination is widely used in systems with high input voltage and large output current. On the other hand, the LLC converter is widely used as a high-efficiency power converter, and when connected by ISOP combination, there is a possibility that input voltage imbalance may occur due to a mismatch of passive devices. To avoid damaging the switching device, this study analyzed the DC-link voltage imbalance of a high-capacity supply using an ISOP LLC converter. In addition, the case where DC-link unbalance control was applied and the case not applied was analyzed respectively. Based on this analysis, an initial start-up algorithm was proposed to prevent input power semiconductor device damage due to DC-link over-voltage. The effectiveness of the proposed algorithm has been verified through simulations and experiments.

Analysis of Series Resonant High Frequency Inverter using Sequential Gate Control Strategy (순차식 게이트 구동방식에 의한 직렬 공진형 고주파 인버터 특성 해석)

  • 배영호;서기영;권순걸;이현우
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.3
    • /
    • pp.57-66
    • /
    • 1993
  • This research proposes a high frequency series resonant inverter consisting of equivalent half - bridge model in combination with two L-C linked full-bridge inverter circuits using MOSFET. As a output power control strategy, the sequential gate control method is applied. Also, analysis of operating MODE and state equation is described. From the computer simulation results, the inverters and devices can be shared properly voltage and current rating of the system in accordance with series and parallel operations. And it is confirmed that the proposed system has very stable performance.

  • PDF

Small Broadband Rectangular Disk-Loaded Monopole Antenna with Electromagnetically Coupled Feed (전자기적 결합 급전 소형 광대역 사각 디스크-로디드 모노폴 안테나)

  • 정종호;박익모
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.653-660
    • /
    • 2004
  • This paper presents monopole antenna with electromagnetically coupled feed and its equivalent circuit model. The proposed structure is consists of a rectangular disk-loaded monopole and a probe with rectangular spiral strip line feed. The rectangular disk-loaded monopole is represented by parallel RLC resonant circuit and the probe with rectangular spiral strip line feed is represented by series RLC resonant circuit. Therefore broad bandwidth can be achieved through electromagnetic coupling between these structures that generate two resonances within close frequency range. The antenna with electrical dimensions of only 0.075λ$\sub$0/${\times}$0.075λ$\sub$0/${\times}$0.075λ$\sub$0/ has 16.5 % fractional bandwidth for VSWR$\leq$2 at a center frequency of 2.038GHz.

A Study on the Design of Microstrip Antenna in 2 GHz Band (2 GHz대 마이크로스트립 안테나 설계에 관한 연구)

  • 고영혁
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.32-43
    • /
    • 1999
  • In this paper, the transformed QMSA to load a capacitor without limitation of the electric force on QMSA(Quarter-wavelength Microstrip Antenna) is designed. Bandwidth of the designed and manufactured antenna is 5.7% at the resonant frequency of 2.0 GHz and the resonant frequency and bandwidth versus change of any arbitrary feed point is observed. Since the size of wide slot width between the left and right parallel plate to load a capacitor is very wide bandwidth, will be suitable for very wide bandwidth communication. The radiation pattern characteristics of the designed antenna based on the dipole structure and the aperture structure analysis method. As calculation results, relative backward radation is - 5 dB.

  • PDF

Development of a High Voltage Semiconductor Switch for the Command Charging o (모듈레이터의 지령충전을 위한 고전압 반도체 스위치 개발)

  • Park, S.S.;Lee, K.T.;Kim, S.H.;Cho, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2067-2069
    • /
    • 1998
  • A prototype semiconductor switch for the command resonant charging system has been developed for a line type modulator, which charges parallel pulse forming network(PFN) up to voltage of 5 kV at repetition rates of 60 Hz. A phase controlled power supply provides charging of the 4.7 ${\mu}s$ filter capacitor bank to voltage up to 5 kV. A solid state module of series stack array of sixe matched SCRs(1.6 kV, 50 A) is used as a command charging switch to initiate the resonant charging cycle. Both resistive and RC snubber network are used across each stage of the switch assembly in order to ensure proper voltage division during both steady state and transient condition. A master trigger signal is generated to trigger circuits which are transmitted through pulse transformer to each of the 6 series switch stages. A pulse transformer is required for high voltage trigger or power isolation. This paper will discuss trigger method, protection scheme, circuit simulation, and test result.

  • PDF