• 제목/요약/키워드: parallel resonance frequency

Search Result 110, Processing Time 0.023 seconds

Design of Dual-Band Pass Filter Using Parallel Coupled SIR (Parallel Coupled SIR을 이용한 이중대역 통과필터 설계 연구)

  • Kim, Koon-Tae;Paek, Hyun;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.215-218
    • /
    • 2009
  • In this paper, Dual-band bandpass filter studied design using Parallel Coupled SIR(Stepped Impedance Resonator). This Dual-band bandpass filter design SIR of half-wavelength by Parallel-coupled type that is available to RFID system and Changed structure in Meander form by size reduce. Because seen Dual-band bandpass filter is designed so that is applicable for frequency 433MHz and 2.45GHz of RFID system is very wide distance between two pass-band, establish 433MHz by fundamental frequency and controlled 2.45GHz by 2st spurious resonance frequency bandstop filter of 1st spurious resonance frequency and Parallel coupled SIR Combine to remove 1st spurious resonance frequency.

  • PDF

Parallel-Branch Spiral Inductors with Enhanced Quality Factor and Resonance Frequency

  • Bae, Hyun-Cheol;Oh, Seung-Hyeub
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • In this paper, we present a cost effective parallel-branch spiral inductor with the enhanced quality factor and the resonance frequency. This structure is designed to improve the quality factor, but different from other fully stacked spiral inductors. The parallel-branch effect is increased by overlapping the first metal below the second metal with same direction. Measurement result shows an increased quality factor of 12 % improvement. Also, we show an octagonal parallel-branch inductor which reduces the parasitic capacitances for higher frequency applications.

Film Bulk Acoustic Resonator(FBAR) using Bragg Reflector for IMT-2000 Bandpass Filter (Bragg 반사층을 이용한 IMT-2000 대역통과필터용 체적 탄성파 공진기)

  • 김상희;김종헌;박희대;이시형;이전국
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.377-382
    • /
    • 2000
  • Film bulk acoustic resonator (FBAR) using AIN reactively sputtered at room temperature was fabricated. The FBAR is composed of a piezoelectric aluminium nitride thin film, top electrode of Al and bottom electrode of Au connected by a short (200${\mu}{\textrm}{m}$) transmission line on both sides and reflector layers of SiO$_2$- W Pair. The active areas of Al and Au were patterned using 150${\mu}{\textrm}{m}$ diameter shadow mask. The series resonance frequency (fs) and the parallel resonance frequency (fp) were measured at 1.976 GHz and 2.005 GHz, respectively. The minimum insertion loss and return loss were 6.1 dB and 37.19 dB, and the quality factor (Q) was 4261.

  • PDF

The Surface Analysis of the Merocyanine Dye LB film using Optical system (광학시스템을 이용한 메로시아닌 색소 LB막의 표면 모폴로지 해석)

  • Kang, Ki-Ho;Shin, Hoon-Kyu;Chang, Jung-Soo;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1714-1716
    • /
    • 2000
  • We fabricated the optical system of merocyanine dye using Langmuir-Blodgett(LB) technique because quite uniform orientation could be obtained, which is one of the most important factors to affect to its optical characteristics. The resonance frequency and other electrical parameters at the parallel resonance state were measured using the impedance analyser(HP 4294 A). Also the morphological changes of dye molecules after UV irradiation were observed using AFM. The parallel resonance frequency and resistance by electrical equivalent circuit were decreased with the UV irradiation and these aspects are different from general mass adsorption process. Therefore the structural changes of dye molecules are being considered, that is, the aggregated molecules become dissociated. It indicates that the shifts of the resonance frequency and the others occurred without mass absorption.

  • PDF

Analysis on the cascade high power piezoelectric ultrasonic transducers

  • Lin, Shuyu;Xu, Jie
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.151-161
    • /
    • 2018
  • A new type of cascade sandwiched piezoelectric ultrasonic transducer is presented and studied. The cascade transducer is composed of two traditional longitudinally sandwiched piezoelectric transducers, which are connected together in series mechanically and in parallel electrically. Based on the analytical method, the electromechanical equivalent circuit of the cascade transducer is derived and the resonance/anti-resonance frequency equations are obtained. The impedance characteristics and the vibrational modes of the transducer are analyzed. By means of numerical method, the dependency of the resonance/anti-resonance frequency and the effective electromechanical coupling coefficient on the geometrical dimensions of the cascade transducer are studied and some interesting conclusions are obtained. Two prototypes of the cascade transducers are designed and made; the resonance/anti-resonance frequency is measured. It is shown that the analytical resonance/anti-resonance frequencies are in good agreement with the experimental results. It is expected that this kind of cascade transducer can be used in large power and high intensity ultrasonic applications, such as ultrasonic liquid processing, ultrasonic metal machining and ultrasonic welding and soldering.

A New Measurement Technique on Inherent-Ring-Resonance Frequency and Effective Loss-Tangent using Ring Filters

  • Ahn, Hee-Ran;Lee, Kwyro
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.3
    • /
    • pp.113-118
    • /
    • 2004
  • As an application of ring filters, a new and simple method to determine an inherent-ring-resonance frequency is introduced. The ring filter consists of a ring and two short stubs. They are connected at 90$^{\circ}$ and 270$^{\circ}$ points of the ring and the ring filter may be seen in such way that two filters are connected in parallel. Therefore, if the two powers of the two filters are out-of-phase at the output, the power excited at the input can not be delivered. That can be done by making difference in length of the two short stubs, and when a certain condition is satisfied, a frequency exists where all the excited power is reflected. That is the very inherent-ring-resonance frequency. In the lossless case, the return loss with the condition reaches 0 dB at the inherent-ring-resonance frequency but does not with conductor, dielectric losses and so on. Therefore, the effective loss tangent at a frequency of interest may be obtained correctly. To verify the method, two ring filters have been fabricated in microstrip lines and the measured results show good agreement with the predicted ones.

A Resonant Characteristics Analysis and Suppression Strategy for Multiple Parallel Grid-connected Inverters with LCL Filter

  • Sun, Jian-jun;Hu, Wei;Zhou, Hui;Jiang, Yi-ming;Zha, Xiao-ming
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1483-1493
    • /
    • 2016
  • Multiple parallel inverters have multiple resonant frequencies that are influenced by many factors. This often results in stability and power quality problems. This paper develops a multiple input multiple output model of grid-connected inverter systems using a closed-loop transfer function. The influence factors of the resonant characteristics are analyzed with the developed model. The analysis results show that the resonant frequency is closely related to the number, type and composition ratio of the parallel inverters. To suppress resonance, a scheme based on virtual impedance is presented, where the virtual impedance is emulated in the vicinity of the resonance frequency. The proposed scheme needs one inverter with virtual impedance control, which reduces the design complexity of the other inverter controllers. Simulation and experimental tests are carried out on two single phase converter-based setups. The results validate the correctness of the model, the analytical results and the resonant suppressing scheme.

Resonance Characteristics Analysis of Grid-connected Inverter Systems based on Sensitivity Theory

  • Wu, Jian;Han, Wanqin;Chen, Tao;Zhao, Jiaqi;Li, Binbin;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.746-756
    • /
    • 2018
  • Harmonic resonance exists in grid-connected inverter systems. In order to determine the network components that contribute to harmonic resonance and the composition of the resonant circuit, sensitivity theory is applied to the resonance characteristic analysis. Based on the modal analysis, the theory of sensitivity is applied to derive a formula for determining the sensitivities of each network component parameter under a resonance circumstance that reflects the participation of the network component. The solving formula is derived for both parallel harmonic resonance and series harmonic resonance. This formula is adopted to a 4-node grid-connected test system. The analysis results reveal that for a certain frequency, the participation of parallel resonance and series resonance are not the same. Finally, experimental results demonstrate that the solving formula for sensitivity is feasible for grid-connected systems.

Electrical Properties of a Laminated Piezoelectric Transformer with the Divided Electrodes (전극 분할 적층형 압전변압기의 전기적 특성)

  • Lee, Yong-Kuk;Lee, Sang-Cheal;Hur, Doo-Oh;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1140-1142
    • /
    • 1995
  • The transformer is fabricated with two piezoelectric vibrator with the divided electrodes and adhesive insulator. We applied the electric input to the driving vibrator in parallel and connect the output voltage to the generating vibrator in series to the resistor load near its fundamental resonance frequency. Then we investigate output voltage in series twice as large as in parallal. Moreover we investigate the load characteristics at resonance frequencies under various resistor and the frequency characteristics near the resonance frequency under no load. Its equvalent circuit is derived from the Mason's model of a thickness-driven piezelectric vibrator. By its equevalent circuit, symbolic expressions for input impedances, voltage ratios, resonance frequencies, and bandwidths have been derived. The values calculated from those symbolic exprssions are shown to agree well with the measurement values.

  • PDF

A Virtual RLC Active Damping Method for LCL-Type Grid-Connected Inverters

  • Geng, Yiwen;Qi, Yawen;Zheng, Pengfei;Guo, Fei;Gao, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1555-1566
    • /
    • 2018
  • Proportional capacitor-current-feedback active damping (AD) is a common damping method for the resonance of LCL-type grid-connected inverters. Proportional capacitor-current-feedback AD behaves as a virtual resistor in parallel with the capacitor. However, the existence of delay in the actual control system causes impedance in the virtual resistor. Impedance is manifested as negative resistance when the resonance frequency exceeds one-sixth of the sampling frequency ($f_s/6$). As a result, the damping effect disappears. To extend the system damping region, this study proposes a virtual resistor-inductor-capacitor (RLC) AD method. The method is implemented by feeding the filter capacitor current passing through a band-pass filter, which functions as a virtual RLC in parallel with the filter capacitor to achieve positive resistance in a wide resonance frequency range. A combination of Nyquist theory and system close-loop pole-zero diagrams is used for damping parameter design to obtain optimal damping parameters. An experiment is performed with a 10 kW grid-connected inverter. The effectiveness of the proposed AD method and the system's robustness against grid impedance variation are demonstrated.