• 제목/요약/키워드: parallel manipulator

검색결과 190건 처리시간 0.029초

평행구동방식 로봇 조작기의 진동제어 (Vibration Control of a Robot Manipulator with a Parallel Drive Mechanism)

  • 최승철;하영균;박영필
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2015-2025
    • /
    • 1991
  • 본 연구에서는 무거운 부하중량(payload)을 운반하는 평행구동기구(parallel drive mechanism)를 가진 2 자유도 수직 로봇 조작기의 마지막 링크를 고속화 및 작업 영역의 확대를 위해 경량의 길이가 긴 링크로 구성하고, 동적 해석 및 제어를 위해 이 를 수직면상에서 회전하는 첨단질량을 가진 Euler-Bernoulli 외팔보로 모델링하였다. Hamilton의 원리를 적용하여 계의 지배방정식을 구하였으며 이를 조작기의 최종 자세 (configuration)에 대한 교란변수들(periturbed variables)을 도입하여 이산시간계 상 태방정식으로 표시하였다. 계의 상태방정식에 대해 디지탈 최적제어 및 최적관측기 이론을 적용하여, 유연한 조작기의 위치 및 진동제어를 병해하여 수행하는 제어기를 설계하였으며, 제어기의 효율성 및 적용성을 검토하기 위하여 수치해석 및 실험을 행 하였고 이들 결과를 비교, 검토하였다.

새로운 6자유도 병렬 매니퓰레이터의 기구학 해석 (Kinimatic Analysis of a New Clss of 6-DOF Parallel Manipulator)

  • 변용규;조형석
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.414-430
    • /
    • 1996
  • In this paper, a new kinematic structure of a parallel manipulator with six Cartesian degrees of freedom is proposed. It consists of a platform which is connected to a fixed base by means of 3-PPSP(parameters P, S denote the prismatic, spherical joints) subchains. Each subchain has a link which is concected to a passive prismatic joint at the one end and a passive spherical joint at the other. The spherical joint is then attached to perpendicularly arranged prismatic actuators which are fixed at the base. The spherical joint is then attached to perpendicularly arranged prismatic actuators which are fixed at the base. This arrangement provides a basis to control all six Cartesian degrees of motion of the platform in space. Due to its efficient architecture, the colsed-form solutions of the inverse and forward kinematics can be obtained. As a consequence, this new kinematic structure can be servo controlled using simple inverse kinematics becaese forward kinematics allows for measuring the platform's position and orientation in Cartesian space. Furthermore, the proposed structure provides an effective functional workspace. Series of simulations are performed to verify the results of the kinematics analyses.

유연 힌지를 이용한 초정밀 3자유도 병렬 매니퓰레이터 개발 (Development of 3-DOF Parallel Manipulator Using Flexure Hinge)

  • 신동익;김영수;서승환;한창수;최두선;황경현
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.127-133
    • /
    • 2009
  • We present a $3-{\underline{P}}RS$ compliant parallel manipulator actuated by PZTs. The motion ranges are $400-{\mu}m$ translation to the z-direction and 5.7-mrad rotation about any axis on the x-y plane. A mechanical amplifier whose advantage is approximately 5.5 is designed and integrated with flexure revolute and spherical joints in a monolithic way. We evaluated the performance of the system: kinematic and dynamic characteristics. In kinematic point of view, the flexures play the roles of conventional mechanism but any nonlinearity such as dead-zone and backlash, which make it possible to achieve the steady-state resolution less than $0.1{\mu}m$. The system shows resonance near 86 Hz with high magnitude and, therefore, poor transient response. But the settling is faster when the flexures are strained higher.

병렬형 매니퓰레니타의 힘전달 특성에 관하여 (On Force-Moment Transmission of Parallel Manipulator)

  • 안병준;홍금식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.246-250
    • /
    • 1995
  • This paper presents a method in analyzing the output force/moments transmission form the applied input forces of the paralled manipulator. Like a serial manipulator the Jacobian matrix introduced in the paper plays role in relating the output forces/monents with the input forces. The force/moment manipulability have been investigated by considering the force transmission and momen transmission independently. Sensitivity analysis has been done and an illuatrating example is given.

  • PDF

인공신경망을 이용한 2진 로봇 매니퓰레이터의 역기구학적 해석 (Inverse Kinematic Analysis of a Binary Robot Manipulator using Neural Network)

  • 류길하;정종대
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.211-218
    • /
    • 1999
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot’s trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. In this paper, we solve the inverse kinematic problem of a binary parallel robot manipulator using neural network and test the validity of this structure using some arbitrary points m the workspace of the robot manipulator. As a result, we can show that the neural network can find the nearest feasible points and corresponding binary states of the joints of the robot manipulator

  • PDF

기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석 (Direct Position Kinematics Solution For Casing Oscillator Using the Kinematic Inversion)

  • 백재호;배형섭;이은준;박명관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.580-583
    • /
    • 2002
  • This paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators, which is convenient and intuitionistic to us. A class of 3-RSR parallel manipulator is considered here. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics. The closed-form solution contains two different meanings-analytical and real-time. So we reach the goal of practical application and control. A numerical example is also presented and are verified by an inverse kinematics analysis. It shows that the method has a practical value for real-time control.

  • PDF

유전 알고리즘을 이용한 6자유도 병렬기구의 최적화 설계 (Optimal Design of a 6-DOF Parallel Mechanism using a Genetic Algorithm)

  • 황윤권;윤정원
    • 제어로봇시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.560-567
    • /
    • 2007
  • The objective of this research is to optimize the designing parameters of the parallel manipulator with large orientation workspace at the boundary position of the constant orientation workspace (COW). The method uses a simple genetic algorithm(SGA) while considering three different kinematic performance indices: COW and the global conditioning index(GCI) to evaluate the mechanism's dexterity for translational motion of an end-effector, and orientation workspace of two angle of Euler angles to obtain the large rotation angle of an end-effector at the boundary position of COW. Total fifteen cases divided according to the combination of the sphere radius of COW and rotation angle of orientation workspace are studied, and to decide the best model in the total optimized cases, the fuzzy inference system is used for each case's results. An optimized model is selected as a best model, which shows better kinematic performances compared to the basis of the pre-existing model.