The paper concerns the successive optimization for structure and parameters of fuzzy inference systems that is based on parallel Genetic Algorithms (PGA) and information data granulation (IG). PGA is multi, population based genetic algorithms, and it is used tu optimize structure and parameters of fuzzy model simultaneously, The granulation is realized with the aid of the C-means clustering. The concept of information granulation was applied to the fuzzy model in order to enhance the abilities of structural optimization. By doing that, we divide the input space to form the premise part of the fuzzy rules and the consequence part of each fuzzy rule is newly' organized based on center points of data group extracted by the C-Means clustering, It concerns the fuzzy model related parameters such as the number of input variables to be used in fuzzy model. a collection of specific subset of input variables, the number of membership functions according to used variables, and the polynomial type of the consequence part of fuzzy rules, The simultaneous optimization mechanism is explored. It can find optimal values related to structure and parameter of fuzzy model via PGA, the C-means clustering and standard least square method at once. A comparative analysis demonstrates that the Dnmosed algorithm is superior to the conventional methods.
We propose a parallel neural network model in which patterns are clustered and patterns in a cluster are studied in a parallel neural network. The learning algorithm used in this paper is based on LVQ algorithm of Kohonen(1990) for clustering and ADALINE(Adaptive Linear Neuron) network of Widrow and Hoff(1990) for parallel learning. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists of 250 patterns of ASCII characters normalized into $8\times16$ and 1124. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists 250 patterns of ASCII characters normalized into $8\times16$ and 1124 samples acquired from signals generated from 9 car models that passed Inductive Loop Detector(ILD) at 10 points. In ASCII character experiment, 191(179) out of 250 patterns are recognized with 3%(5%) noise and with 1124 car model data. 807 car models were recognized showing 71.8% recognition ratio. This result is 10.2% improvement over backpropagation algorithm.
Purpose Due to the COVID-19 pandemic, many companies are building virtual workplaces based on virtual reality technology. Through this study, we intend to identify the trend of convergence and convergence research between virtual reality technology and work space, and suggest future promising fields based on this. Design/methodology/approach For this purpose, 12,250 bibliographic data of research papers related to Virtual Reality (VR) and Workplace were collected from Scopus from 1982 to 2021. The bibliographic data of the collected papers were analyzed using Text Mining and Pathfinder Network, Parallel Neighbor Clustering, Nearest Neighbor Centrality, and Triangle Betweenness Centrality. Through this, the relationship between keywords by period was identified, and network analysis and visualization work were performed for virtual reality-based workplace research. Findings Through this study, it is expected that the main keyword knowledge structure flow of virtual reality-based workplace convergence research can be identified, and the relationship between keywords can be identified to provide a major measure for designing directions in subsequent studies.
퍼지 클러스터링 기반 벡터 양자화 알고리즘은 퍼지 클러스터링 분석이 벡터 양자화 프로세스 초기단계에서 초기화에 덜 민감하게 하기 때 문에 데이터 압축 분야에서 널리 사용되어 왔다. 하지만, 퍼지 클러스터링 처리는 훈련 벡터 공간에 포함된 불확실한 양적 공식의 복잡한 프레 임워크 때문에 상당한 계산량이 요구된다. 이러한 상당한 계산량 부하를 극복하기위해 본 논문은 4,096 프로세싱 엘리먼트로 구성된 어레이 아 키텍처를 이용하여 퍼지 벡터 양자화 알고리즘의 병렬 구현을 제안한다. 제안하는 병렬 구현은 4,096 프로세싱 엘리먼트를 이용하여 클러스터 링 프로세스 동안 효과적인 벡터 할당 정책을 적용함으로써 계산적으로 효율적인 솔루션을 제공한다. 모의실험 결과, 제안한 병렬 구현은 기존 의 다른 어레이 아키텍처를 이용한 구현보다 성능 및 효율 측면에서 상당한 향상을 보였다. 또한동일한 130nm 기술에서 제안한 병렬 구현은 오늘날의 ARM이나 TI DSP 프로세서를 이용한 구현과 비교하여 약 1000배의 성능 향상 및 100배의 에너지 효율 향상을 보였다. 이 결과들은 향상된 성능 및 에너지효율에서 제안한 병렬 구현의 잠재가능성을 입증한다.
워크스테이션 클러스터 환경은 그 가격 대 성능비가 일반적으로 MPPS보다 좋고, 그 소프트웨어나 하드웨어가 쉽게 이후에 개선될 수 있기 때문에 병렬처리 분야에서 새로운 대안으로 연구되고 있다. 본 논문에서는 ‘집단적 입출력 클러스터링 (Collective I/O Clustering)’이라 불리는 워크스테이션 클러스터를 위한 실행사간 라이브러리의 설계 및 구현 방안을 제시한다. 이 라이브러리에서는 통신 및 입출력 시스템 하에서 완벽하게 통합되는 워크스테이션 클러스터 상에서 비정형 응용 프로그램의 입출력을 위해 , 사용자에 친숙한 프로그래밍 모형을 제공한다,. 이 집단적 입출력 클러스터링에서는 두 가지 형태의 입출력 방식이 가능하다 첫 번째 입출력 방식에서 할당되는 모든 프로세서들은 연산 노드뿐만 아니라, 입출력 서버의 역할도 수행하는 형태이다. 두 번째 입출력 방식에서는 오직 일부분의 프로세서들만이 입출력 서버의 역할을 수행하는 형태이다. 그리고 본 논문에서는 통신과 입출력 비용을 최적화하기 위해 압축과 소프트웨어 캐슁 기능을 집단적 입출력 클러스터링에 적용한 결과를 보인다. 모든 성능실험 결과는 아르곤 연구소에서 보유하고 있는 IBM SP2를 사용하여 얻었다.
Multiple sequence alignment is a method to compare two or more DNA or protein sequences. Most of multiple sequence alignment tools rely on pairwise alignment and Smith-Waterman algorithm to generate an alignment hierarchy. Therefore, in the existing multiple alignment method as the number of sequences increases, the runtime increases exponentially. In order to remedy this problem, we adopted a parallel processing suffix tree algorithm that is able to search for common subsequences at one time without pairwise alignment. Also, the cross-matching subsequences triggering inexact-matching among the searched common subsequences might be produced. So, the cross-matching masking process was suggested in this paper. To identify the function of the clusters generated by suffix tree clustering, BLAST and CDD (Conserved Domain Database)search were combined with a clustering tool. Our clustering and annotating tool consists of constructing suffix tree, overlapping common subsequences, clustering gene sequences and annotating gene clusters by BLAST and CDD search. The system was successfully evaluated with 36 gene sequences in the pentose phosphate pathway, clustering 10 clusters, finding out representative common subsequences, and finally identifying functional domains by searching CDD database.
실제 주민등록증을 스캐너로 수집한 후 해당 영상에 대하여 주민등록번호를 인식하였다. 인식을 위한 전처리 과정은 처리 속도를 감안하여 대상부분을 포함 주민등록증의 약 1/8 크기만큼 분할한 후 잡음에 해당하는 홀로그램을 제거하였다. 숫자 인식 방법으로는 원형비교법과 학습법을 병행하였으며 대상 숫자의 단순한 특징 추출을 위해 클러스터링 방식을 사용하였고, 외부 환경에 따라 오인식되는 숫자에 대해 세선화 기법을 병행하여 유사한 숫자간의 유일한 특징으로 구분하였다. 인식에 대한 실험 결과, 숫자 인식에 관한 타 논문의 인식률과 비교하여 양호한 인식률이 도출되었다.
컴퓨팅 알고리즘의 병렬화는 계산량 및 데이터의 증가와 더불어 필요성이 꾸준히 제기되어 왔다. 그러나 병렬처리에 사용되는 컴퓨터는 1990년대 중반까지 주로 슈퍼컴퓨터로서 가격, 사용법 등 일반인이 쉽게 접근하지 못할 요소가 많았다. 1990년대 후반에 병렬 처리를 위한 PC-cluster라는 새로운 개념이 나타나게 되었고, 아직 설치와 사용법에서 개선될 여지가 많이 있음에도 불구하고 값싼 비용으로 고성능의 계산 능력을 원하는 일반 사용자에게 PC-cluster는 가장 뛰어난 대안으로 떠오르고 있다. GIS 데이터의 매핑은 축척변환(scale), 벡터에서 레스터로의 변환, DXF 자료구조에서 내부 자료구조로의 변환, 두 지역이 연결되었을 때 가장자리 데이터의 보정, 개체선택, Join, Cut의 처리 등 병렬 처리에 적합한 여러 가지 특성을 가지고 있다. 따라서 이들을 K-clustering으로 구현할 경우 값싼 비용으로 실시간 처리를 할 수 있어 성능과 비용의 모든 면에서 만족할 만한 결과를 얻을 수 있을 것이다. 본 논문에서는 병렬처리 및 PC-clustring, 그리고 이들을 이용하기 위한 라이브러리 및 도구에 대한 소개와, 이들이 매핑에 어떻게 적용시킬 수 있는 가를 살펴보았다. 또한 매핑의 여러 기능을 위한 병렬 프로그램을 개발하였고, 실험 결과 노드의 수에 따라 모든 기능에서 성능이 거의 선형적으로 향상됨을 보여주고 있다.
본 논문에서는 주어진 칼라 영상열을 분석하여 이동물체 추적을 할수 있는 병렬 프레임워크를 구축한다. 병렬 프레임워크는 크게 탐색 공간 축소 부분과 추적 부분으로 나뉘며 탐색 공간 축소 부분은 퍼지 클러스터링과 칼만 필터를 이용한 예측부분으로 구성되고 추적은 거리변환에 기반을 둔 하우스돌프 거리를 이용해 경계선 정합을 함으로써 이루어진다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.