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Abstract Clusters of workstations (COW) are becoming an attractive option for parallel scientific
computing, a field formerly reserved to the MPPs, because their cost—performance ratio is usually
better than that of comparable MPPS, and their hardware and software can be easily enhanced to the
latest generations. In this paper we present the design and implementation of our runtime library for
clusters of workstations, called "Collective I/O Clustering”. The library provides a friendly
programming model for the I/O of irregular applications on clusters of workstations, being completely
integrated with the underlying communication and I/O system. In the collective I/O clustering, two /O
configurations are possible. In the first I/O configuration, all processors allocated can act as /O
servers as well as compute nodes. In the second I/O configuration, only a subset of processors can
act as /O servers. The compression and software caching facilities have been incorporated into the
collective I/O clustering to optimize the communication and I/O costs. All the performance results were
obtained on the IBM-SP machine, located at Argonne National Labs.

1. Introduction
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Clusters of workstations (COW) are becoming an
attractive option for parallel scientific computing [1,2],
a field formerly reserved to the MPPs, because their
cost-performance ratio is usually better than that of
comparable MPPS, and their hardware and software
can be easily enhanced to the latest generations. The
new high speed local area networks, such as ATM,
Myrinet, or the Gigabit Ethernet, allow to build high

performance~low cost clustered systems using
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workstations as a basic building block{3}. The
large-scale parallel scientific applications can be
solved in cost-effective way on the clusters of
workstations. Most of those applications have
tremendous I/O requirements [4], including check
pointing of large-scale data sets, and writing of
further

Furthermore, a large subset of those applications are

periodical snapshots for visualization.
irregular applications, where accesses to data are
performed through one or more levels of indirection
[5]. Sparse matrix computations, particle codes, and
many CFD described via indirections, exhibit this
feature. A typical computational science analysis
cycle for these applications involves several steps:
mesh generation, domain decomposition, simulation,
visualization and interpretation of results, and archival
of data and results for visualization check pointing
and postprocessing of results.

To circumvent the /O problems, two solutions
have been traditionally used: sequential I/O on one
and data distribution to the other

processors, and storing each processor local data to a

processor

local data file [6,7). Both solutions have inherent
problems associated: sequential I/O is a major
bottleneck for the application performance, and local
files must rely on some kind of preprocessing to
create the local files from a single data file of the
mesh and on some postprocessing to recombine the
data into a global file canonically ordered. As the
number of grid points being considered moves to the
million-to-billion range, sequential recombination of
the MBytes/GBytes of data into the anticipated
terabytes of data simply becomes unfeasible.

In previous works[89] we presented the design
and implementation of a high—performance runtime
system that can support all types of irregular
application’s I/O on MPPs. One of the main goals in
developing the scheme was to always maintain data
in some global canonical order to avoid the explosive
number of file formats and to enhance parallelism
using collective I/O [10]. By using the runtime
systern, the application processes can cooperate in
reading or writing data using a single parallel file that
is always ordered to avoid pre/post processing steps

and bottlenecks from the previous solutions described
above. Two other major goals were to use a software
caching scheme to enhance data reuse, and to use
compression to reduce the communication time and
storage Spacé required for the application data sets. It
was implemented on an Intel Paragon at Caltech and
on the ASCl/red Teraflops machine[1l] at Sandia
National Lab., and the evaluation results were very
promising [(8].

In this paper we present the design and im-
plementation of a runtime system for clusters of
workstations. The 1/O architecture of a COW usually
relays on a set of /O servers, having local disks, and
a set of diskless nodes. The design of our runtime
library perfectly fits this feature, as we distinguish
two kind of processors: 1/O servers and compute
nodes. The leading idea is to distribute data over the
I/O servers, while executing computation on compute
nodes (of course, a server can also be a compute
node.) All /O details, such as data exchange, data
distribution, and collective /O, are transparent to the
application programmer. Moreover, the runtime
library provides a friendly programming model for the
1/0 of irregular applications on clusters of work-
integrated with the
underlying communication and I/O system.

stations, being completely
The rest of the paper is organized as follows:
Section 2 presents some design motivations. Section 3
describes the design and implementation of collective
I/O clustering operations of the runtime library,
presenting two I/O configurations: in the first /O
configuration, all processors are clients and I/O
servers, and in the second /O configuration, a subset
of processors will only be /O servers. Section 3 also
shows the design for the software caching scheme
developed in our runtime library to enhance data
reuse. Section 4 shows the performance results on the
IBM/SP machine located at Argonne National Labs.
Finally, some conclusions are shown in section 5.

2. Motivations

We describe a typical irregular application, in
which it sweeps all the edges of an unstructured
mesh, to use a general application in our I/O system
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as shown in Figure 1(a). In the application, an input
mesh file is read, and then the edges and nodes are
distributed over used block
distribution mechanism to spread them to the

processors. We

processors. The loop termination value, no_of_edges_
partitioned_per_proc represents the number of edges
partitioned to a single processor. In the nested loops,
edgelj].V1 and
connected by an edge, edge(j]. The reference pattern
is specified by edgelj]l.V1 and edge([j].V2, called

indirection array, and also these values are used to

edge[jlV2 mean two nodes

access to a global array. X is a data array which
contains the physical values associated with each
node. In this application, a node has an array
consisting of 4 doubles, and other 2 floats.

read Input_mesh_{file containing afl edges;
partition input_mesh_file among proceasors;

for (iter=0; iter<Nlter; fter++} {
for (j=0; j<no_of_edges_partitioned_per._proc; 4 {
Q=Fix{edge{il.V1], xdedge(f}. V21
/* F represents & math. function. */
/* V1. V2 are two nodes connected by an edge */
xedgelfl.Vil t= Q;
Hedgell. V2] += Q;

i
}

(a) A Typical Irregular Application
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(b} An Example of The Edge and Node Distribution

Fig. 1 A Typical Irregular Application and Mesh
Distribution

Figure 1(b) shows an example of the edge and
node partition by using block distribution. In the
processor 0, n2, n4, and n5 are the remote indirection
elements whose physical values mush be fetched from
processor 1 and 2. All the remote values are fetched
before the computation.

After the computations are finished, the data

(physical values associated with a node) are written
to a global array whose access pattern is determined
by indirection elements, edge[j].V1 and edge(j]. V2,
using the collective I/O clustering method.
The main objectives for the collective I/O
clustering are as follows:
® Provide flexibility needed to the various 1I/0
configurations for a cluster of workstations. In a
workstation cluster, several /O configurations
are possible based on the available I/O servers
and network bandwidth of the system. First,
one or more local disks can be assigned to a
single processor each, thus making it possible
to act as an I/O server. Next, only a subset of
processors are dedicated as /O servers by
receiving more memory space and aggregate
bandwidth of the system. The collective I/O
clustering is designed to support the both I/O
configurations.
® Provide scalability. Different I/O configurations
for a cluster of workstations can reveal different
requirements with respect to the interconnect
speed and number of I/O servers available.
Some I/O configuration will perform best with
well-balanced data distribution among 1/O
servers, while others will perform best with the
minimum data migration by exploiting as much
data locality as possible. Therefore, it is very
important to support a wide range of 1/O
policies to provide highly scalable /O internal
structure with respect to the more processors
and /O servers.
® Provide user—controllable stripe unit.
Appropriate declustering of I/O requests over
I/0 servers should be addressed to produce high
performance 1/0 bandwidth [12] and has been
successfully implemented in the several file
[13,1415]. In the collective I1/O

clustering, we use a user—controllable stripe

systems

unit which is specified by GF (Group Factor) in
the file-creation time. Each processor’'s data
domain for I/O is partitioned according to the
GF size, and distributed over all /O servers.

® Provide compression facility. Compression has
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been traditionally used to reduce disk space
requirement [16], but recently it has been
applied to parallel applications managing large
arrays with the aim of reducing the total
[17,18]. The collective I/O
clustering combines compression facility to achieve

execution time

two major goals: reducing disk space requirement,
and reducing the total execution time.

We describe an overview of the collective 1/O
clustering on an irregular application in Figure 2. In
the collective 1/O clustering, a global file is organized
as a sequence of sub files, each of which is stored in
an I/O server's local disk. When a file is reading or
the appropriate schedule information is
In the
processor's data domain for I/O is determined, based
on the two-phase method described in [10,19]. These
partitioned  into
non-overlapping blocks, which may or may not span

writing,

constructed. schedule information, each

data domains are logically
several local disks. The logical data domain partition
is determined by GF (1 < GF < number of /O
servers), which is given by users at the file-creation
time. If GF is 1, the whole data domain of a processor
is transferred to the appropriate 1/O server. If GF is
greater than 1, the data domain of a processor is
divided into the contiguous GF number of blocks, and
then these blocks are distributed across all I/O
servers in round-robin fashion. Each /O server
stores a sub file, which consists of the blocks
received from the processors.

There are three main advantages in the file
structure supported by the collective /O clustering.
Unstructured data access pattern can be converted
into simple contiguous I/O access pattern to the /O
servers. Also, for a file, by supporting a sequence of
sub files, we can expect less /O interferences, when
with P
processors trying to access a file and S number of I/O

reading or writing data. For example,
servers, each storing one sub file, only P/S processors
contend to access the same sub file, instead of all P
processors contending to access to a single file.
Finally, since all the sub files still maintain global

view of the file, we don't need any special

postprocessing step (sort or merge) for the further

processes.

VO wezvens {40, 113
ar=2

Fig. 2 An Collective 1/0
Clustering on an Irregular Application

Overview of the

3. Implementation Details

In this section, we describe an overview of the
collective I/0 clustering. The methaod is organized into
three Schedule
preprocessing stage, communications for exchanging

main  stages: construction a
the remote indirection and data elements between
processors, and collective I/O clustering to perform
1/O operation on 1/O servers. As mentioned above, we
configure a processor pool in two models. In the first
model, the whole processors allocated act as /O
servers. In the second model, only a subset of
processors act as I/O servers. In either cases, since
applications can be run on all processors allocated, the
collective [/O clustering facilitates the available
resources as much as possible.

3.1 Schedule Construction Stage

The schedule stage describes the communication
and 1/O patterns required for each processor. The two
main steps are involved in computing the schedule
information. First, each processor is assigned a data
domain into which it is responsible for reading and
writing. The data domain of each processor is defined
to be an almost same size to distribute I/O workload
evenly. Next, the indirection elements in the local
memory are individually scanned to decide which
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processor is responsible for performing I/O for the
corresponding data. Based on the scanning, the
indirection elements are coalesced into a single
message per destination processor. Once the schedule
information is constructed, it can be repeatedly used
in the irregular application whose access pattern does
not change during computations. If the access pattern
is changed, the appropriate schedule must be
reconstructed, and then be used for the collective I/O
clustering.

3.2 Communication Stage

In this stage, the remote indirection and data
elements in each processor’s local memory must be
exchanged, according to the processor’s data domain
determined in the schedule. Let {Io(0), Io(1), I,(2),
1:(0)} and {(d(1x(0)), d(Ip(1)), d(I:(2)), d(I:(0))} be the
indirection and data arrays, respectively, stored in
processor 0's local memory, and {Io(2), Io(3), Ii(3),
I(1)} and {d(Ix(2)) ,d(1x(3)), d(I1,(3)), d(I;(1))} be the
indirection and data arrays, respectively, stored in
processor 1’s local memory, where Ii(j) and d(I(j))
are the indirection and data elements that must be
assigned to processor { in the local position of j. In
case of writing, 1/(2), I:(0) and d(I;(2)), d(I:(0)) in
the processor 0 are transferred to the processor 1.
Similarly, in the processor 1, Io(2), Io(3) and d(Ix(2)),
d(In(3)) are transferred to the processor 0. As a
result, processor 0 collects {d(Io(0)), d(Ix(1)),
d(Io(2)), d(In(3))} and processor 1 collects {d(1:(0)),
d(I,(1)), d(I(2)), d(I;(3))} into its local memory.

3.3 Collective 1/O Clustering for Read and

Write Operations

Based on the data domain arranged in the previous
stage, the collective I/O clustering is executed. This
stage takes buffer offset at which to start I/O, buffer
length which is the number of data elements for I/O
and pointer to the buffer. The additional information
is also passed to the collective I/O clustering, such as
the file name which is used for actual data and
meta-data files, compression flag to check if the
compression is applied for, number of I/O servers
(NumOfIO), and GF, which defines the number of
partitions on each processor's data domain. For
example, with GF to be 4, each processor’s data

domain is divided into 4 partitions. Hereafter, we call
the partition as block. Among the processors
allocated, as many as NumOflO processors are
starting from the

configured as 1/O servers,

lowest-rank processor.
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Fig. 3 Collective 1/O Clustering for Write Operation

Figure 3 shows the steps involved in the collective
1/0 clustering for a write operation. In the step 1, the
write operation begins with slicing each processor’s
data domain into GF size. Each block resulting from
the slicing is then converted to be the same size over
all processors, while making the block size to fit to
multiple of file system block size. By maintaining the
same size of blocks, we can easily determine the
block number and local position in the block from
which the data should be retrieved when we read data
from the sub files. The performance can be also
improved by aligning to the file system block size
since the reading and writing of the fragments is
replaced by writing into the file system block. In the
step 2, all the blocks are distributed to the appropriate
I/O servers in round-robin fashion. If GF is 1, each
processor’s entire data domain goes to an appropriate
1/0 server, with exploiting maximum data locality. If
GF is the same size as NumOflO, each processor’'s
data domain is distributed over all I/O servers, with
exploiting maximum data parallelism. When the
compression is applied, the size of GF is restricted to
1 to maintain data integrity, since one bit of data loss
can cause the entire /O failure. The compressed data
domain of each processor goes to the appropriate I/O
server. In the step 3, each /O server gathers all the



HAY &88 A% YAzl 23 LEY B0 HE YEY A2 501

blocks coming from the processors and writes them
to a single sub file to be stored into its local disk. If
the compression is applied before writing, the whole
length of a sub file is aligned to be a multiple of file
system block size. In the step 4, the meta—data
describing the characterization of the sub file is sent
to the master processor. In the step 5, the master
processor collects all the meta—data and writes them
into single meta-data file. Each meta-data contains
information about a sub file, such as the path to the local
disk where the sub file is stored, uncompressed and
compressed sub file lengths, block list containing the
block size and relative offset in the sub file, and so on.
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Fig. 4 Collective I/O Clustering for Read Operation

Figure 4 shows the steps involved in the collective
1/0 clustering for a read operation. In the step 1, the
master processor reads the meta-data file and
broadcasts it to all the processors. In the step 2, each
processor's data domain is mapped to the blocks
stored in the sub files, and also the appropriate I/O
servers to retrieve the data are determined. In the
step 3, the control information containing the local
block number, position in the block and data count to
retrieve is broadcasted to the /O servers. In the step
4, each I/0 server reads a sub file from its own local
disk. If the compression has been applied, after
reading it from the disk, the sub file is uncompressed.
In the step 5, the 1/O servers distribute data to all the
processors based on the control information received
in the step 3.

3.4 Software Caching Scheme combined with

the Collective I/0 Clustering

To reduce the I/O cost, we develop the software
caching scheme for the collective I/O clustering. The
motivation of the software caching scheme in
irregular applications is that the same data may be
accessed repeatedly during the execution of
subsequent irregular loops. The data need not be
written or read to or from files, by keeping it to
processor’s local memory and by using it in the
subsequent loops. The basic goals and design of the
software caching scheme are as follows: First and
foremost, it is to reduce I/O to the maximum extent
possible. To achieve this, a read and write /O phases
is divided into two read and write /O phases, where
the second read and write phase only accesses data
that is "new-data”. Second goal is to utilize the
schedule information which is constructed in the
beginning and only build incremental schedule for
"new-data” when necessary. To satisfy these aims,
we added the following two steps to the basic
collective I/O clustering. 1) Reading data partially
from files and redistributing data into appropriate
locations of each processor; and 2) s/w caching phase
to modify schedule information. In the write operation,
redistribution step precedes the file write step. The
execution pattern of the software caching scheme to
perform a write operation in irregular applications is
as follows:

mesh data 1 - create mesh data file which will be
referred in loopl

mesh data 2 - create mesh data file which will be
referred in loop2

schedule - compute schedule information for loopl and
loop2

loop1

writel - write the data which has been referred in loopl
but will not be referred in loop2

s/w caching - modify schedule information to access
new data

loop2

write2 - write all data which has been referred in loop2

In writel phase, some data which will not be used
in a subsequent loop is written to files. Since only
some portion of data is written to file, the I/O cost in

- the writel is smaller than those in the write2. In s/w
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caching phase, schedule information for the new loop
is reconstructed, which includes the size of
re-referred data and the modified data domain of each

processor in the re-referred data.

4. Experimentation

The experimentation results for the collective I/O
clustering were obtained on the IBM-SP at Argonne
National Labs. The IBM-SP, called Quad, has 80
nodes, each running AIX 4.2.1 with patches. Each
node has a 256MB of main memory and two of 4.5
GB disks. The nodes are interconnected by a IBM's
high-performance switch.

4.1 Performance Evaluation without and with

Compression

The collective I/O clustering was combined with
the irregular application shown in Figure 1. Initially,
the application reads 12M of edges and 8M of nodes.
The nodes and edges are distributed over 64
processors, based on block distribution. As a result,
each processor receives 192K of edges and 128K of
nodes. A single node has a 40B of physical values
consisting of 2 floats and an array of 4 doubles.

In the application, after the computations are
finished, the physical values of the two nodes
connected by an edge are written to the files. For
example, in the Figure 1, processor 0 writes the
physical values of the nodes n0, ni, nZ, n4 and n5,
and processor 1 writes the physical values of the
nodes n0, n5, n2, n6, and so on. The files are ordered
by the node numbers, n0, nl, nZ, etc. We obtained all
the performance results by using 64 processors, and,
in a single write iteration, 320MB of data was written
to the files. We iterated the whole procedures 7 times.
Each time we read the different edges and nodes, thus
each iteration requiring to provide a new schedule
before writing data to the files. In an iteration, we ran
the computations 20 times and wrote the resulting
data every 5 runs, by setting Nliter in the Figure 1 to
20. Consequently, we ran the application by
constructing 7 schedules and by writing 35 times of
320MB of data. The times were averaged over all
runs.

Figures 5 and 6 show the I/O bandwidth and time

components for the collective I/O clustering, in which
the number of 1/O servers is 4, 8, 16, 64, respectively.
The I/0O bandwidth is obtained by dividing 320 MB
into the averaged schedule and write times over all

runs.

VO Bandwidth (MB/Sac.}

Num of VO servers, GF

Fig. 5 I/O Bandwidth for the Collective /O
Clustering as a function of (number of

I/O servers, GF)

g
©

Breakdown of Execution Time {Sec.)

Num of VO servers, GF

Fig. 6 Breakdown of Execution Time for the
Collective I/O Clustering as a function of
(number of /O servers, GF)

The write time includes the times obtained by
performing two stages, one is for communicating the
remote indirection and data elements between
processors, and the other for writing data to the files
In the

application shown in Figure 1, after communicating

by wusing the collective I/O clustering.

the remote elements for a write operation, each
processor is responsible for writing 5MB of data.
Since we spread the nodes and edges over processors
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in block distribution, the times for the schedule and
communication to access remote element do not
change significantly, while varying the I/O nodes.
Usually,
heuristic data mapping to optimize the communication

irregular applications use a variety of

requirements[20]. With such schemes, the times for
communicating remote elements, irregular_comp and
irregular_comm in Figure 6, can be greatly reduced
by allowing to access the local elements. In each /0O
server, we varied GF size from 1 to the number of I/O
servers. In the 4 I/O server configuration, as the GF
size increases, the time for performing the collective
I/O clustering becomes small. With the 1 of GF size,
each processor sends 5MB of data to an I/O server,
taking large communication overhead. As the GF size
increases, the message size becomes small, SMB/GF,
taking less communication overhead. In the same
number of I/O servers, the write portion of the
collective I/O clustering does not significantly change
with the variation of GF, since each I/O server
collects the same amount of data from all processors
to make a sub file. Without block alignment, each sub
(TotalProcessors/NumberOfl -
Oservers)«MsgSize, where MsgSize is Sizeof-
DataDomainPerProc/GF. As the number of I/O

servers increases, each sub file's size becomes small,

file's size is

thus taking less time for the write portion of the
collective I/O clustering. We can see the same
behaviors with 8 and 16 I/O servers.

Figures 5 and 6 also show the I/O bandwidth and
time components for the collective I/O clustering in
which all processors are configured as I/O servers. In
the Figures, the 1 of GF size shows the best
performarnce. Since each processor writes the data
collected in its data domain to the local disk, no
collective 1/O
clustering. This case exploits as much data locality as
When the GF size increases, the L/O

clustering requires the communication overhead,

communication requires in the

possible.

showing less performance results.

Figures 7 and 8 show the performance results with
compression, while varying the number of I/O servers
from 4 to 64. To maintain the data integrity, only GF
of 1 is supported with the compression. We used

lzrw3 compression algorithm. Since the compression
is incorporated in the collective 1/O clustering, no
effect occurs in the schedule and communication for
accessing the remote elements. In the collective 1/O
clustering, after each processor's data domain is
compressed, the communication and write operations
are performed with the compressed data. Therefore,
those times are significantly reduced, when compared
to the Figures 5 and 6. However, the compression
time takes more than 1 sec in every cases. This
offsets  the
communicating the compressed data and writing it to

performance gains obtained by
the I/0O servers. In the 4 I/O server configuration, the
reduction in the communication and write operations
exceeds the compression overhead, resulting in the

better performance with the compression. However,

60.0
400
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0o L. - S o

Nt of KO sarvers, GF

0 Bandwiah (MB/Sec)

Fig. 7 /O Bandwidth for the Collective /O
combined I/O
combined with Compression as a function
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Compression as a function of (number of
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Fig. 9 Execution Time for the Software Caching
scheme as function of overlap range and
GF

as the number of 1/O servers increases, the cost for
the communication and write operations becomes
small, and using the compression rather degrades the
performance.
4.2 Performance Evaluation
Caching Scheme
We obtained the performance results for the

with  Software

software caching using 32 processors. Figure 9 shows
the results, while varying the overlap range and GF
size. The overlap range is defined as the data area
overlapped between two irregular loops. In the Figure
9, Non shows the performance results obtained by
without using the software caching scheme. In the
experiments, we varied the overlap range from 1/32 to
31/32, and the GF size from 1 to 16. Figure 9 shows
that the execution time increases until the overlap
range approaches to 8/32, and then begins to drop. In
the software caching scheme, when we change the
overlap range from 31/32 to 1/32, the I/O cost
increases due to the less overlap data area. On the
other hand, the communication cost decreases as the
overlap area is varied from 8/32 to 1/32. This
reduction in the communication overhead exceeds the
I/O cost, causing the reduced execution time.

5. Conclusions

We developed the runtime system, called Collective
1/0 Clustering,
applications on a cluster of workstations. In the

that can support the irregular

system, two I/O configurations are possible; in the

first configuration, all the processors act as 1/O
servers as well as compute nodes, and in the second
configuration, only a subset of processors are
dedicated as I/O Further,

supports a user-controllable stripe unit which is

servers. the system
specified by GF in the file-creation time. We
evaluated the collective /O clustering on the IBM-SP
at Argonne National Labs. We found that, in the first
configuration, exploiting data locality produces the
best performance by requiring no communication cost.
On the other hand, in the second configuration, as the
data in each processor’s domain is more distributed
over I/O servers, the performance results become
better due to the less communication overhead. As an
collective  1/0
clustering with the compression. As far as the

optimization, we combined the

reduction in the communication and I/O costs
outperforms the compression overhead, the results
with compression are improved, when compared with
those without compression. However, with the small
communication and I/O costs, compression overhead
becomes a burden to produce better performance. It
should be noted that, several aspects such as the
network and I/O bandwidth of the system and size of
the data set to be written affect the compression
Also,
algorithm with less overhead is very critical to

performance. choosing the compression

improve performance. Finally, in the software caching
scheme, by accessing only the overlap data area
between two irregular loops, the 1/O cost can be

optimized.
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