• Title/Summary/Keyword: parallel bridge

Search Result 255, Processing Time 0.027 seconds

A Wide Voltage-Gain Range Asymmetric H-Bridge Bidirectional DC-DC Converter with a Common Ground for Energy Storage Systems

  • Zhang, Yun;Gao, Yongping;Li, Jing;Sumner, Mark
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.343-355
    • /
    • 2018
  • A wide-voltage-conversion range bidirectional DC-DC converter is proposed in this paper. The topology is comprised of one typical LC energy storage component and a special common grounded asymmetric H-bridge with four active power switches/anti-parallel diodes. The narrow output PWM voltage is generated from the voltage difference between two normal (wider) output PWM voltages from the asymmetric H-bridge with duty cycles close to 0.5. The equivalent switching frequency of the output PWM voltage is double the actual switching frequency, and a wide step-down/step-up ratio range is achieved. A 300W prototype has been constructed to validate the feasibility and effectiveness of the proposed bidirectional converter between the variable low voltage side (24V~48V) and the constant high voltage side (200V). The slave active power switches allow ZVS turn-on and turn-off without requiring any extra hardware. The maximum conversion efficiency is 94.7% in the step-down mode and 93.5% in the step-up mode. Therefore, the proposed bidirectional topology with a common ground is suitable for energy storage systems such as renewable power generation systems and electric vehicles with a hybrid energy source.

Investigation of mechanical behaviour of non-persistent jointed blocks under uniaxial compression

  • Asadizadeh, Mostafa;Moosavi, Mahdi;Hossaini, Mohammad Farouq
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.29-42
    • /
    • 2018
  • This paper presents the results of an empirical study in which square rock-like blocks containing two parallel pre-existing rough non-persistent joints were subjected to uniaxial compression load. The main purpose of this study was to investigate uniaxial compressive strength and deformation modulus of jointed specimens. Response Surface Method (RSM) was utilized to design experiments and investigate the effect of four joint parameters, namely joint roughness coefficient (JRC), bridge length (L), bridge angle (${\gamma}$), and joint inclination (${\theta}$). The interaction of these parameters on the uniaxial compressive strength (UCS) and deformation modulus of the blocks was investigated as well. The results indicated that an increase in joint roughness coefficient, bridge length and bridge angle increased compressive strength and deformation modulus. Moreover, increasing joint inclination decreased the two mechanical properties. The concept of 'interlocking cracks' which are mixed mode (shear-tensile cracks) was introduced. This type of cracks can happen in higher level of JRC. Initiation and propagation of this type of cracks reduces mechanical properties of sample before reaching its peak strength. The results of the Response Surface Methodology showed that the mutual interaction of the joint parameters had a significant influence on the compressive strength and deformation modulus.

Comparison of PWM Strategies for Three-Phase Current-fed DC/DC Converters

  • Cha, Han-Ju;Choi, Soon-Ho;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.363-370
    • /
    • 2008
  • In this paper, three kinds of PWM strategies for a three-phase current-fed dc/dc converter are proposed and compared in terms of losses and voltage transfer ratio. Each PWM strategy is described graphically and their switching losses are analyzed. With the proposed PWM C strategy, one turn-off switching of each bridge switch is eliminated to reduce switching losses under the same switching frequency. In addition, RMS current through the bridge switches is lowered by using parallel connection between two bridge switches and thus, conduction losses of the switches are reduced. Further, copper losses of the transformer are decreased due to the reduced RMS current of each transformer's winding. Therefore, total losses are minimized and the efficiency of the converter is improved by using the proposed PWM C strategy. Digital signal processor (DSP: TI320LF2407) and a field-programmable gate array (FPGA: EPM7128) board are used to generate PWM patterns for three-phase bridge and clamp MOSFETs. A 500W prototype converter is built and its experimental results verify the validity of the proposed PWM strategies.

A Novel PCCM Voltage-Fed Single-Stage Power Factor Correction Full-Bridge Battery Charger

  • Zhang, Taizhi;Lu, Zhipeng;Qian, Qinsong;Sun, Weifeng;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.872-882
    • /
    • 2016
  • A novel pseudo-continuous conduction mode (PCCM) voltage-fed single-stage power factor correction (PFC) full-bridge battery charger is proposed in this paper. By connecting a freewheeling transistor in parallel with an input inductor, the PFC cell can operate in the PCCM with a constant duty ratio. Thus, the dc/dc stage can be designed using this constant duty ratio and the restriction on the duty ratio of the PFC cell is eliminated. As a result, the input current distortion is less and the dc bus voltage becomes controllable over the wide output power range of the battery charger. Moreover, the operation principle of the dc/dc stage is designed to be similar to that of a conventional phase-shifted full-bridge converter. Therefore, it is easy to implement. In this paper, the operation of the new converter is explained, and the design considerations of the controller and key parameters are presented. Simulation and experimental results obtained from a 1 kW prototype are given to confirm the operation of the proposed converter.

Research for Distributed Design for 30kW Full-Bridge Converter for in High Frequency Welding Machine (30kW 고주파 용접 전원용 Full-Bridge 컨버터의 분산설계에 관한 연구)

  • Kim, Min-Woo;Choi, Seung-Won;Lee, Il-Oun;Lee, Jun-Young;Jeong, Kye-Soo;Ito, Ei-Ji
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.469-476
    • /
    • 2020
  • This study presents the results of the research on power supplies for welding machine using MOSFET switches in high frequency switching for ease of design and use a 100 kHz switching frequency for high power density. The topology of the proposed power supplies for welding machine is ZVS-PWM full-bridge converter. The proposed converter is designed on a distributed transformer for ease of design and be used in a 100 kHz switching frequency for high power density. The problem of power imbalance of transformers occurring in parallel operation of transformers can be improved by applying common mode coupled inductor and the corresponding contents are experimented and verified in this paper to present conclusions.

Development of Parallel Arc Fault Detector Using Ripple Voltage (리플전압을 이용한 병렬아크 사고 감지기 개발)

  • Choi, Jung-Kyu;Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.453-456
    • /
    • 2016
  • The major causes of electrical fire in low-voltage distribution lines are classified into short-circuit fault, overload fault, electric leakage, and electric contact failure. The special principal factor of the fire is electric arc or spark accompanied with such electric faults. This paper studies the development of an electric fire prevention system with detection and alarm of that in case of parallel arc fault occurrence in low-voltage distribution lines. The proposed system is designed on algorithm sensing the instantaneous voltage drop of line voltage at arc fault occurrence. The proposed detector has characteristics of high-speed operation responsibility and superior system reliability from composition using a large number of semiconductor devices. A new sensing control method that shows the detection of parallel arc fault is sensed to ripple voltage drop through a diode bridge full-wave rectifier at electrical accident occurrence. Some experimental tests of the proposed system also confirm the practicality and validity of the analytical results.

A Numerical Study of Hydraulic Fractures Propagation with Rock Bridges (Rock bridges를 고려한 수치 해석적 수압파쇄 균열거동 연구)

  • 최성웅
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.201-210
    • /
    • 2000
  • Rock bridge in rock masses can be considered as one of several types of opening-mode fractures, and also it has been known to have a great influence on the stability of structures in rock mats. In the beginning of researching a rock bridge it used to be studied only in characteristics of its behavior, as considering resistance of material itself. However the distribution pattern of rock bridges, which can affect the stability of rock structures, is currently researched with a fracture mechanical approach in numerical studies. For investigating the effect of rock bridges on the development pattern of hydraulic fractures, the author analyzed numerically the stress state transition in rock bridges and their phenomena with a different pattern of the rock bridge distributons. From the numerical studies, a two-crack configuration could be defined to be representative of the most critical conditions for rock bridges, only when cracks are systematic and same in their length and angle. Moreover, coalescence stresses and onset of propagation stresses could be known to increase with decreasing s/L ratio or increasing d/L ratio. The effect of pre-existing crack on hydraulic fracturing was studied also in numerical models. Different to the simple hydraulic fracturing modeling in which the fractures propagated exactly parallel to the maximum remote stress, the hydraulic fractures with pre-existing cracks dial not propagate parallel to the maximum remote stress direction. These are representative of the tendency to change the hydraulic fractures direction because of the existence of pre-existing crack. Therefore s/L, d/L ratios will be identical as a function effective on hydraulic fractures propagation, that is, the $K_{I}$ vague increase with decreasing s/L ratio or increasing d/L ratio and its magnification from onset to propagation increases with decreasing s/L ratio. The scanline is a commonly used method to estimate the fracture distribution on outcrops. The data obtained from the scanline method can be applied to the evaluation of stress field in rock mass.s.

  • PDF

Phase-Shift Full-Bridge DC/DC Converter with Fixed-Phase Operation Inverter (고정 위상 동작 인버터를 포함하는 위상천이 풀 브리지 DC/DC 컨버터)

  • Kim, Jin-Ho;Park, Jae-Sung;Kim, Hong-Kwon;Park, Jun-Woo;Shin, Yong-Saeng;Ji, Sang-Keun;Cho, Sang-Ho;Roh, Chung-Wook;Hong, Sung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • In this paper, the phase-shift full-bridge DC/DC converter with fixed-phase operation inverter is proposed. The proposed circuit consists of two full-bridge inverters which are connected in parallel. While one full-bridge inverter operates as the fixed-phase, it regulates the output voltage by adjusting the phase of the other inverter. During the normal operation period, the proposed circuit makes the less amount of conduction loss of the primary switches and secondary synchronous rectifiers, as well as the less amount of the current ripple of the output inductor, than the conventional phase-shift full-bridge DC/DC converter does. Also, it achieves high efficiency by reducing the snubber loss of the secondary synchronous rectifier. To sum up, the present inquiry analyzes the theoretical characteristics of the proposed circuit, and shows the experimental results from a prototype for 450W power supply.

The Effect of the Discontinuity Spacing/Length Ratio on Step-Path Failure of Jointed Rock Slopes (절리 암반 사면의 계단 경로 파괴에 미치는 불연속면 간격/길이 비의 영향)

  • Woon Sang Yoon
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.317-327
    • /
    • 2024
  • When a non-persistent joint system is formed in a large-scale rock slope, slope failure may occur due to presence of a the stepped sliding surface. Such a surface can be divided into joint-to-joint sliding surfaces or joint-to-rock bridge sliding surfaces. In the latter case, the rock bridge provides shear resistance parallel to the joint and tensile resistance perpendicular to the joint. The load of the sliding rock can lead to failure of the rock bridge, thereby connecting the two joints at each ends of the bridge and resulting in step-path failure of the slope. If each rock bridge on a slope has the same length, the tensile strength is lower than the shear strength, resulting in the rock bridges oriented perpendicular to the joint being more prone to failure. In addition, the smaller the ratio of discontinuity spacing to length, the greater the likelihood of step-path failure. To assess the risk of stepped sliding on a rock slope with non-persistent joints, stability analysis can be performed using limit equilibrium analysis or numerical analysis. This involves constructing a step-path failure surface through a systematic discontinuity survey and analysis.

A Numerical Study of Hydraulic Fractures Propagation with Rock Bridges (Rock bridges를 고려한 수치 해석적 수압파쇄 균열거동 연구)

  • 최성웅
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.447-456
    • /
    • 2000
  • Rock bridge in rock masses can be considered as one of several types of opening-mode fractures, and also it has been known to have a great influence on the stability of structures in rock mass. In the beginning of researching a rock bridge it used to be studied only in characteristics of its behavior, as considering resistance of material itself. However the distribution pattern of rock bridges, which can affect the stability of rock structures, is currently researched with a fracture mechanical approach in numerical studies. For investigating the effect of rock bridges on the development pattern of hydraulic fractures, the author analyzed numerically the stress state transition in rock bridges and their phenomena with a different pattern of the rock bridge distributions. From the numerical studies, a two-crack configuration could be defined to be representative of the most critical conditions for rock bridges, only when cracks are systematic and same in their length and angle. Moreover, coalescence stresses and onset of propagation stresses could be known to increase with decreasing s/L ratio or increasing d/L ratio. The effect of pre-existing crack on hydraulic fracturing was studied also in numerical models. Different to the simple hydraulic fracturing modeling in which the fractures propagated exactly parallel to the maximum remote stress, the hydraulic fractures with pre-existing cracks did not propagate parallel to the maximum remote stress direction. These are representative of the tendency to change the hydraulic fractures direction because of the existence of pre-existing crack. Therefore s/L, d/L ratios will be identical as a function effective on hydraulic fractures propagation, that is, the K$_1$ value increase with decreasing s/L ratio or increasing d/L ratio and its magnification from onset to propagation increases with decreasing s/L ratio. The scanline is a commonly used method to estimate the fracture distribution on outcrops. The data obtained from the scanline method can be applied to the evaluation of stress field in rock mass.

  • PDF