• Title/Summary/Keyword: parallel adaptive tasks

Search Result 9, Processing Time 0.018 seconds

Mathematical Modeling of the Tennis Serve: Adaptive Tasks from Middle and High School to College

  • Thomas Bardy;Rene Fehlmann
    • Research in Mathematical Education
    • /
    • v.26 no.3
    • /
    • pp.167-202
    • /
    • 2023
  • A central problem of mathematics teaching worldwide is probably the insufficient adaptive handling of tasks-especially in computational practice phases and modeling tasks. All students in a classroom must often work on the same tasks. In the process, the high-achieving students are often underchallenged, and the low-achieving ones are overchallenged. This publication uses different modeling of the tennis serve as an example to show a possible solution to the problem and develops and discusses one adaptive task each for middle school, high school, and college using three mathematical models of the tennis serve each time. From model to model within the task, the complexity of the modeling increases, the mathematical or physical demands on the students increase, and the new modeling leads to more realistic results. The proposed models offer the possibility to address heterogeneous learning groups by their arrangement in the surface structure of the so-called parallel adaptive task and to stimulate adaptive mathematics teaching on the instructional topic of mathematical modeling. Models A through C are suitable for middle school instruction, models C through E for high school, and models E through G for college. The models are classified in the specific modeling cycle and its extension by a digital tool model, and individual modeling steps are explained. The advantages of the presented models regarding teaching and learning mathematical modeling are elaborated. In addition, we report our first teaching experiences with the developed parallel adaptive tasks.

A Study on Adaptive Parallel Computability in Many-Task Computing on Hadoop Framework (하둡 기반 대규모 작업처리 프레임워크에서의 Adaptive Parallel Computability 기술 연구)

  • Jik-Soo, Kim
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1122-1133
    • /
    • 2019
  • We have designed and implemented a new data processing framework called MOHA(Mtc On HAdoop) which can effectively support Many-Task Computing(MTC) applications in a YARN-based Hadoop platform. MTC applications can be composed of a very large number of computational tasks ranging from hundreds of thousands to millions of tasks, and each MTC application may have different resource usage patterns. Therefore, we have implemented MOHA-TaskExecutor(a pilot-job that executes real MTC application tasks)'s Adaptive Parallel Computability which can adaptively execute multiple tasks simultaneously, in order to improve the parallel computability of a YARN container and the overall system throughput. We have implemented multi-threaded version of TaskExecutor which can "independently and dynamically" adjust the number of concurrently running tasks, and in order to find the optimal number of concurrent tasks, we have employed Hill-Climbing algorithm.

Resource management for moldable parallel tasks supporting slot time in the Cloud

  • Li, Jianmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4349-4371
    • /
    • 2019
  • Moldable parallel tasks are widely used in different areas, such as weather forecast, biocomputing, mechanical calculation, and so on. Considering the deadline and the speedup, scheduling moldable parallel tasks becomes a difficulty. Past work majorly focuses on the LA (List Algorithms) or OMA (Optimizing the Middle Algorithms). Different from prior work, our work normalizes execution time and makes all tasks have the same scope in normalized execution time: [0,1], and then according to the normalized execution time, a method is used to search for the reference execution time without considering the deadline of tasks. According to the reference execution time, we get an initial scheduling result based on AFCFS (Adaptive First Comes First Served) policy. Finally, a heuristic approach is used to improve the performance of the initial scheduling result. We call our method HSRET (a Heuristic Scheduling method based on Reference Execution Time). Comparisons to other methods show that HSRET has good performance in AWT (Average Waiting Time), AET (Average Execution Time), and PUT (Percentages of Unfinished Tasks).

A study on the genetic algorithms for the scheduling of parallel computation (병렬계산의 스케쥴링에 있어서 유전자알고리즘에 관한 연구)

  • 성기석;박지혁
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.166-169
    • /
    • 1997
  • For parallel processing, the compiler partitions a loaded program into a set of tasks and makes a schedule for the tasks that will minimize parallel processing time for the loaded program. Building an optimal schedule for a given set of partitioned tasks of a program has known to be NP-complete. In this paper we introduce a GA(Genetic Algorithm)-based scheduling method in which a chromosome consists of two parts of a string which decide the number and order of tasks on each processor. An additional computation is used for feasibility constraint in the chromosome. By granularity theory, a partitioned program is categorized into coarse-grain or fine-grain types. There exist good heuristic algorithms for coarse-grain type partitioning. We suggested another GA adaptive to the coarse-grain type partitioning. The infeasibility of chromosome is overcome by the encoding and operators. The number of processors are decided while the GA find the minimum parallel processing time.

  • PDF

A parallel tasks Scheduling heuristic in the Cloud with multiple attributes

  • Wang, Qin;Hou, Rongtao;Hao, Yongsheng;Wang, Yin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.287-307
    • /
    • 2018
  • There are two targets to schedule parallel jobs in the Cloud: (1) scheduling the jobs as many as possible, and (2) reducing the average execution time of the jobs. Most of previous work mainly focuses on the computing speed of resources without considering other attributes, such as bandwidth, memory and so on. Especially, past work does not consider the supply-demand condition from those attributes. Resources have different attributes, considering those attributes together makes the scheduling problem more difficult. This is the problem that we try to solve in this paper. First of all, we propose a new parallel job scheduling method based on a classification method of resources from different attributes, and then a scheduling method-CPLMT (Cloud parallel scheduling based on the lists of multiple attributes) is proposed for the parallel tasks. The classification method categories resources into different kinds according to the number of resources that satisfy the job from different attributes of the resource, such as the speed of the resource, memory and so on. Different kinds have different priorities in the scheduling. For the job that belongs to the same kinds, we propose CPLMT to schedule those jobs. Comparisons between our method, FIFO (First in first out), ASJS (Adaptive Scoring Job Scheduling), Fair and CMMS (Cloud-Minmin) are executed under different environments. The simulation results show that our proposed CPLMT not only reduces the number of unfinished jobs, but also reduces the average execution time.

An Adaptive Workflow Scheduling Scheme Based on an Estimated Data Processing Rate for Next Generation Sequencing in Cloud Computing

  • Kim, Byungsang;Youn, Chan-Hyun;Park, Yong-Sung;Lee, Yonggyu;Choi, Wan
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.555-566
    • /
    • 2012
  • The cloud environment makes it possible to analyze large data sets in a scalable computing infrastructure. In the bioinformatics field, the applications are composed of the complex workflow tasks, which require huge data storage as well as a computing-intensive parallel workload. Many approaches have been introduced in distributed solutions. However, they focus on static resource provisioning with a batch-processing scheme in a local computing farm and data storage. In the case of a large-scale workflow system, it is inevitable and valuable to outsource the entire or a part of their tasks to public clouds for reducing resource costs. The problems, however, occurred at the transfer time for huge dataset as well as there being an unbalanced completion time of different problem sizes. In this paper, we propose an adaptive resource-provisioning scheme that includes run-time data distribution and collection services for hiding the data transfer time. The proposed adaptive resource-provisioning scheme optimizes the allocation ratio of computing elements to the different datasets in order to minimize the total makespan under resource constraints. We conducted the experiments with a well-known sequence alignment algorithm and the results showed that the proposed scheme is efficient for the cloud environment.

Adaptive Dynamic Load Balancing Strategies for Network-based Cluster Systems (네트워크 기반 클러스터 시스템을 위한 적응형 동적 부하균등 방법)

  • Jeong, Hun-Jin;Jeong, Jin-Ha;Choe, Sang-Bang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.11
    • /
    • pp.549-560
    • /
    • 2001
  • Cluster system provides attractive scalability in terms of compution power and memory size. With the advances in high speed computer network technology, cluster systems are becoming increasingly competitive compared to expensive MPPs (massively parallel processors). Load balancing is very important issue since an inappropriate scheduling of tasks cannot exploit the true potential of the system and can offset the gain from parallelization. In parallel processing program, it is difficult to predict the load of each task before running the program. Furthermore, tasks are interdependent each other in many ways. The dynamic load balancing algorithm, which evaluates each processor's load in runtime, partitions each task into the appropriate granularity and assigns them to processors in proportion to their performance in cluster systems. However, if the communication cost between processing nodes is expensive, it is not efficient for all nodes to attend load balancing process. In this paper, we restrict a processor that attend load balancing by the communication cost and the deviation of its load from the average. We simulate various models of the cluster system with parameters such as communication cost, node number, and range of workload value to compare existing load balancing methods with the proposed dynamic algorithms.

  • PDF

Knowledge Based Recommender System for Disease Diagnostic and Treatment Using Adaptive Fuzzy-Blocks

  • Navin K.;Mukesh Krishnan M. B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.284-310
    • /
    • 2024
  • Identifying clinical pathways for disease diagnosis and treatment process recommendations are seriously decision-intensive tasks for health care practitioners. It requires them to rely on their expertise and experience to analyze various categories of health parameters from a health record to arrive at a decision in order to provide an accurate diagnosis and treatment recommendations to the end user (patient). Technological adaptation in the area of medical diagnosis using AI is dispensable; using expert systems to assist health care practitioners in decision-making is becoming increasingly popular. Our work architects a novel knowledge-based recommender system model, an expert system that can bring adaptability and transparency in usage, provide in-depth analysis of a patient's medical record, and prescribe diagnostic results and treatment process recommendations to them. The proposed system uses a set of parallel discrete fuzzy rule-based classifier systems, with each of them providing recommended sub-outcomes of discrete medical conditions. A novel knowledge-based combiner unit extracts significant relationships between the sub-outcomes of discrete fuzzy rule-based classifier systems to provide holistic outcomes and solutions for clinical decision support. The work establishes a model to address disease diagnosis and treatment recommendations for primary lung disease issues. In this paper, we provide some samples to demonstrate the usage of the system, and the results from the system show excellent correlation with expert assessments.

A Scheduling Algorithm for Parsing of MPEG Video on the Heterogeneous Distributed Environment (이질적인 분산 환경에서의 MPEG비디오의 파싱을 위한 스케줄링 알고리즘)

  • Nam Yunyoung;Hwang Eenjun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.12
    • /
    • pp.673-681
    • /
    • 2004
  • As the use of digital videos is getting popular, there is an increasing demand for efficient browsing and retrieval of video. To support such operations, effective video indexing should be incorporated. One of the most fundamental steps in video indexing is to parse video stream into shots and scenes. Generally, it takes long time to parse a video due to the huge amount of computation in a traditional single computing environment. Previous studies had widely used Round Robin scheduling which basically allocates tasks to each slave for a time interval of one quantum. This scheduling is difficult to adapt in a heterogeneous environment. In this paper, we propose two different parallel parsing algorithms which are Size-Adaptive Round Robin and Dynamic Size-Adaptive Round Robin for the heterogeneous distributed computing environments. In order to show their performance, we perform several experiments and show some of the results.