
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, Sep. 2019 4349
Copyright ⓒ 2019 KSII

Resource management for moldable
parallel tasks supporting slot time in the

Cloud

Jianmin Li1*
1 School of Computer and Information Engineering, Xiamen University of Technology,

Xiamen, 361024, China
[e-mail: lijianmin2006@sina.cn]

*Corresponding author: Jianmin Li

Received Novmeber 21, 2018; revised January 31, 2019; revised February 23, 2019; accepted February 14, 2019;
published September 30, 2019

Abstract

Moldable parallel tasks are widely used in different areas, such as weather forecast,
biocomputing, mechanical calculation, and so on. Considering the deadline and the speedup,
scheduling moldable parallel tasks becomes a difficulty. Past work majorly focuses on the LA
(List Algorithms) or OMA (Optimizing the Middle Algorithms). Different from prior work,
our work normalizes execution time and makes all tasks have the same scope in normalized
execution time: [0,1], and then according to the normalized execution time, a method is used to
search for the reference execution time without considering the deadline of tasks. According to
the reference execution time, we get an initial scheduling result based on AFCFS (Adaptive
First Comes First Served) policy. Finally, a heuristic approach is used to improve the
performance of the initial scheduling result. We call our method HSRET (a Heuristic
Scheduling method based on Reference Execution Time). Comparisons to other methods
show that HSRET has good performance in AWT (Average Waiting Time), AET (Average
Execution Time), and PUT (Percentages of Unfinished Tasks).

Keywords: moldable parallel tasks; resource management; slot time; normalized execution
time;

http://doi.org/10.3837/tiis.2019.09.002 ISSN : 1976-7277

4350 Jianmin Li : Resource management for moldable parallel tasks supporting slot time in the Cloud

1. Introduction

With the development of Cloud computing, parallel tasks have widely used in different
areas [1]. The moldable parallel task is one of the most important parallel tasks which makes
the user not give attention to the DAG (Directed Acyclic Graph) of the program. The user just
gives some parameters to the program, and gets the result in a short amount of time [2]. The
moldable parallel task model [2] has widely been used in diverse areas, such as cognitive
computing technology [4], weather forecast [5,6], mobile computing, biocomputing,
mechanical calculation, and so on [7].

The problem of scheduling of moldable parallel tasks needs to take multiple aspects into
consideration, such as the deadline of parallel tasks [8], system load, the speedup of tasks,
network [9], dependency of different parallel tasks [7, 9], and so on [7, 8, 9]. Sometimes, those
aspects are conflicting with each other. For example, if a parallel task has a higher value in the
parallelism (giving more resources to the parallel task), it shortens the execution time; but at
the same time (according to Amdahl's law [10]), it consumes more resources and makes other
tasks have to reduce the resources. Sometimes, that would make other tasks not be finished
before their deadlines. Furthermore, the non-linear relation between the parallelism and the
execution time makes the scheduling problem more difficult than other environments [5].

Researchers have done much work for the scheduling of parallel tasks in different
environments, such as Grid, cluster [11], multi-core system [12], and cloud environment [8].
The scheduling targets include minimizing the makespan (or execution time) [13], reducing
the cost [14], saving the energy consumption [15] and so on. Those scheduling methods
include approximation algorithm [3, 7], agent-based algorithm [16], iterative approach and
other methods. Recently, Map-Reduce [17] is also used to schedule moldable parallel tasks.

That work either supposes that the task has a forecast speedup under different parallelisms
[19], or supposes that we know the details of the DAG of the parallel task. However, it is very
difficult to get an accurate forecast of the speedup under different parallelisms [20]. Even we
know the detail of the DAG, how to schedule it is also a very challenging problem. Those two
aspects bring a negative effect on those scheduling methods and make the scheduling method
more difficult.

Different from past work, we do not take account of the DAG of the program, which is very
difficult to control for the scheduler. We just take account of the speedup of the parallel tasks
and the system load of the system. Based on the system load and the speedup with different
numbers of resources, we propose our scheduling method.

Main contributions of our paper focus on:
(1) we give a system model for moldable parallel tasks, which support slot time, speedup and

so on;
(2) we try to normalize the execution time of different parallel tasks to make them have a same

scope of [0,1];
(3) we propose a scheduling for the moldable parallel tasks;
(4) we compare our method with other methods in different environments, especially when

the system has an inaccurate value in the speedup.
The framework of our paper is introduced as follows. Section 2 gives a literature review of

the scheduling methods for parallel tasks, especially for moldable parallel tasks. Section 3

https://xueshu.baidu.com/s?wd=paperuri%3A(7df954bda19e44173409a35f7877c011)&filter=sc_long_sign&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_ks_para=q%3DMoldable%20parallel%20job%20scheduling%20using%20job%20efficiency%3A%20an%20iterative%20approach

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, Sepember 2019 4351

provides an example for moldable parallel tasks-a program for weather forecast. Section 4
addresses our proposed system architecture and the related model, and at the same time, it also
gives a deep analysis to the system. Section 5 gives a scheduling method for the scheduling of
moldable parallel tasks. Section 6 describes the simulation performance of our proposed
methods and existing methods. We concluded our study and further work in Section 7.

2. Related Work
D. G. Feitelson et al., “[2] referred to tasks with a fixed number of processors (parallelism) as
rigid tasks, tasks that can be resized only at launch time as moldable parallel tasks, and tasks
that can grow or shrink at runtime as the malleable task. In other words, jobs with a fixed
parallelism, if the parallelism is set at the beginning and never can be changed during the
execution, the task belongs to moldable tasks; if the parallelism can be changed at any time,
the task belongs to malleable parallel task.

For the scheduling of parallel tasks, most methods are proposed by smartly selecting the
route and time of the sub-tasks in the DAG of those parallel tasks. Those methods always try to
shorten the execution time. D. Sánchez et al., “[16] proposed an agent-based architecture to
manage and execute independent parallel tasks on a dynamic network. They introduced an
application on their proposed architecture to support the execution of a complex knowledge
acquisition task by an adequate load balancing policy. W. YiRong et al., “[11] divided the
entire scheduling process of scheduling MOWS (Mixed-parallel Online Workflow Scheduling)
into four phases: task prioritizing, waiting queue scheduling, task rearrangement, and task
allocation. They developed four new methods: shortest-workflow-first, priority-based
backfilling, preemptive task execution and All-EFT (ALL Early Finished Task First) task
allocation, for scheduling NOWS tasks in speed-heterogeneous multi-cluster environments. L.
Keqin [21] investigated the problem of non-clairvoyant scheduling of independent parallel
tasks on single and multiple multicore processors. For a single multicore processor, they used
LTF (Largest Task First) to get the asymptotic worst-case performance bound for a
non-clairvoyant offline scheduling algorithm. For multiple multicore processors, he used RTF
(Random Task First) for a non-clairvoyant online scheduling problem. R. M. Pathan et al.,
“[22] proposed a two-level GFP (preemptive Global Fixed-priority scheduling Policy) for the
scheduling of a real-time parallel application that is modeled as a collection of parallel and
recurrent tasks on a multicore platform: a task-level scheduler first determines the
highest-priority ready task and a subtask-level scheduler selects its highest-priority subtask for
execution. Q. Wang et al., “[23] proposed a new parallel job scheduling method based on a
classification method of resources from different attributes (including the memory, bandwidth,
CPU)-CPLMT (Cloud Parallel scheduling based on the Lists of Multiple Attributes). The
classification method categorized resources into different kinds according to the number of
resources that satisfied the job from different attributes of the resource, such as the speed of the
resource, memory and so on. Most interference-based analysis techniques are not directly
applicable to parallel programming model, so, H. S. Chwa et al., “[24] extended the notion of
interference to capture thread-level parallelism more accurately. They leveraged
parallelism-aware interference to derive efficient EDF (Earliest Deadline First) schedulability
tests that are directly applicable to parallel task models, including DAG models on multi-core
platforms. Those methods always target to shorten the execution time by smartly selecting the
execution route of DAG of the parallel tasks.

4352 Jianmin Li : Resource management for moldable parallel tasks supporting slot time in the Cloud

Some scheduling methods not only try to shorten the execution time, but also try to
improve performance of other aspects, such as reducing peak memory [27], the energy
consumption [28, 29, 30] and so on. K. Enver et al., “tried to reduce the peak memory in a
parallel execution environment. They modeled the tasks as a DAG and targeted to find a
topological ordering which has the maximum number of cut edges at any point. The vertices
and edges have weights, and the aim is to minimize the maximum weight of cut edges in
addition to the weight of the last vertex before the cut. B. Mahmood et al., “[28] addressed the
real-time scheduling problem of parallel tasks on a performance asymmetric multicore
processor with multiple cores targeting to reduce the power consumption. Based on DVFS
(Dynamic Voltage and Frequency Scaling) technology, they used parallel EDF - first divides
the tasks into m segments and then executes these distributed tasks in EDF fashion. H. F.
Sheikh et al., “[29] proposed MOEA (a Multi-Objective Evolutionary Algorithm), which tries
to determine Pareto optimal solutions with simultaneous optimization of performance (P),
energy (E), and temperature (T). Their work included problem-specific solution encoding,
determining the initial population of the solution space, and the genetic operators that get
efficient solutions in a short amount of time. They presented a methodology to select one
solution from the Pareto front according to the user's preference. M. Shojafar et al., “[30]
proposed an energy-efficient adaptive resource scheduler for NetFCs (Networked Fog
Centers). It is operated at the edge of the vehicular network and are connected to the served
VCs (Vehicular Clients) through I2V (Infrastructure-to-Vehicular) TCP/IP-based single-hop
mobile links. Taking account of the locally measured states of the TCP/IP connections, they
try to maximize the overall communication-plus-computing energy efficiency, and meet the
application-induced hard QoS (Quality of Service) requirements on the minimum
transmission rates, maximum delays and delay-jitters. Those methods always try to consider
multiple targets of scheduling, and based on the multiple targets, they propose different
methods from different aspects. Other methods also try to consider the speedup of parallel
tasks and ignore the DAG (Directed Acyclic Graph) of the parallel tasks. They always
improve the performance by smartly selecting the speedup of parallel tasks. Hao et al., “[25]
considered the scheduling of parallel tasks in multi-Cloud environment. They categorized jobs
into different lists according to the waiting time of the jobs and every job has different
parallelisms. At the same time, a new method-ZOMT (the scheduling parallel tasks based on
ZERO-ONE scheduling with Multiple Targets) is proposed to solve the problem of scheduling
parallel jobs. M. Beji et al., “[26] tried to schedule parallel application by resizing the
application and finding the appropriate sub-platform with the optimal number of resources
(clusters, processors) from the original platform. There are three steps in the scheduling: firstly,
determining of the computing clusters; secondly, determining the optimal number of
processors in each cluster; finally placing the tasks on the appropriate processors. Though
those methods take account of the speedup, all of them always neglect the speedup which is
not accurate in the scheduling. Most important of all, our moldable parallel tasks support slot
time, which brings users much convenience, such as checking the error points, getting the
phrase result, and so on.

3. An example for moldable parallel task model
In this section, we will give an example for the moldable parallel task, and then, we give the
model of the moldable parallel task.

javascript:;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, Sepember 2019 4353

3.1 Moldable parallel task model
We model the moldable parallel task 𝑡𝑖 (1 ≤ 𝑖 ≤ 𝐼) as:

𝑡𝑖 = {𝑎𝑟𝑖 ,𝑑𝑙𝑖 , < 𝑝𝑙𝑖
𝑗, 𝑒𝑡𝑖

𝑗, 𝑠𝑝𝑖
𝑗 >,𝑚𝑖𝑛𝑝𝑖 ,𝑚𝑎𝑥𝑝𝑖} (𝑚𝑖𝑛𝑝𝑖 ≤ 𝑗 ≤ 𝑚𝑎𝑥𝑝𝑖) (1)

𝑎𝑟𝑖 is the arrival time, 𝑑𝑙𝑖 is the deadline. 𝑝𝑙𝑖
𝑗 and 𝑒𝑡𝑖

𝑗 is the jth parallelism and the related
execution time (𝑝𝑙𝑖

𝑗 < 𝑝𝑙𝑖
𝑗+1). 𝑠𝑝𝑖

𝑗 is the speedup when the parallelism of the task is 𝑝𝑙𝑖
𝑗 .

𝑚𝑖𝑛𝑝𝑖 and 𝑚𝑎𝑥𝑝𝑖 is the minimum parallelism and the maximum parallelism of the task. 𝐼 is
the total number of tasks. In formula (1), the execution time 𝑒𝑡𝑖

𝑗 is the time executed on a SR
(standard resource).

3.2 Moldable parallel task supporting slot time model
The moldable parallel task always needs much time to execute them, and sometimes, there are
some errors from the task or the computing resources, the task may be broken in the execution.
So, slot time is used to support moldable parallel tasks. Slot time not only helps us to check the
error that happens in the execution, but also offers us an easy way to schedule those tasks.
During the slot time, the task holds the allocated resources exclusively, until the end of every
slot time. At the end of the slot time, the task can give up the execution right even if it is not
finished.

Fig. 1 gives an example of the scheduling moldable tasks. The rectangle with small squares
is the sub-task that has been finished. The black rectangle is the sub-task that has not been
scheduled. There are four resources and the task comes first, which is paralleled by 4*3 small
tasks. The execution time of every task is a SL (Slot Time). In the first slot, the task a comes
and gets 4*1 slots time. Then the task b comes, which has a short time to the deadline, so, it has
to be executed with the parallelism of 3. After that, in the time for the two slots time to come,
the rest of tasks of a (𝑎𝑖,𝑗 , 𝑖 = 2,3) are executed.

R1

R2

R3

a1,2 a1,3

a2,2 a2,3

a3,2 a3,3

a1,1

a2,1

a3,1

R4 a4,2 a4,3a4,1

a1,2 a1,3

a2,2 a2,3

a3,2 a3,3

b1,1

b2,1

b3,1

a4,2 a4,3null

a12 a1,3

a2,2 a2,3

a3,2 a3,3

a4,2 a4,3

a1,3

a2,3

a3,3

a4,3

1th slot 2th slot 3th slot 4th slot

Fig. 1. An example for moldable parallel tasks

3.3 A motive example for scheduling of moldable parallel task supporting slot
time model
In this section, we will give an example to schedule 4 tasks (a, b, c, d) on five resources
(𝑅1~𝑅5). Suppose that all those tasks arrive at the beginning. Table 1 gives attributes of those
four tasks (the deadline and the arrival time denoted by the number of slot times),

4354 Jianmin Li : Resource management for moldable parallel tasks supporting slot time in the Cloud

Table 1. An example of scheduling of moldable parallel tasks
Task deadline Arrival time <parallelism, execution time> Available selection
a 5 0 <1,4> <2,3> <3,3> <1,4> <2,3> <3,3>
b 7 0 <1,8><2,5><3,4> <2,5><3,4>
c 6 0 <1,7><2,4><3,3> <2,4><3,3>
d 2 3 <1,5><2,3><4,2> <4,2>

The tasks a, b and c arrive at the beginning time, and the task d arrives at the 3th slot time
(Fig. 2). Just considering the deadline, the job can select the parallelism in column 5 of Table
1. To reduce the consumed resources, we select the parallelism with the smallest parallelism
that meets the requirement. So, the parallelisms of a, b and c are 1 (a1,1~a1,4), 2 (b1,1~b2,5) and 2
(c1,1~c2,4) , respectively. When the task d comes, it can only be paralleled as the parallelism is 4
to meet the deadline. So, the sub-tasks of b (b1,4, b2,4, b1,5, b2,5) and c (c1,4, c2,4) are suspended.
After the execution of d, the sub-tasks of b and c are beginning to be executed again.

In fact, we can also schedule tasks with other kinds of scheduling policies: task with
different parallelisms and different orders. To the best of our knowledge, only our method can
ensure the four tasks are finished before their deadlines. But, we also find that we always make
the task consume the lowest resources, and if the system is under a low load, it may increase
the execution time.

From the above-mentioned example, we find in the scheduling of moldable parallel tasks:
(1) the parallelism of the moldable parallel task cannot be changed in the execution;
(2) the sub-tasks of a task can be suspended during the execution (at the end of every slot

time);
(3) the selection of parallelisms is decided by the system load;
(4) the scheduling order of the sub-tasks of a task can be changed during execution.

So, there are two main steps in the scheduling of malleable parallel tasks: (1) assigning the
parallelism, and (2) deciding the scheduling order of sub-tasks.

R1

R2

R3

a1,1

b1,1

b2,1

a1,2

b1,2

b2,2

a1,3

b1,3

b2,3

a1,4

d2,1

d2,1

R4 c1,1 c1,2 c1,3 d3,1

R5 c2,1 c2,2 c2,3 d4,1

d2,2

d2,2

d3,2

d4,2

b1,4

b2,4

b1,5

b2,5

c1,4

c2,4

Fig. 2. Scheduling moldable parallel tasks supporting slot time

4. An analysis to the system
In this section, first, we will present the system framework, and then, we will give the method
to decide the parallelism and the related scheduling order of every sub-task of scheduled
moldable parallel tasks.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, Sepember 2019 4355

4.1 System framework
Our study takes a simulation model to address performance issues associated with the task that
can be parallelized by different numbers of sub-tasks with different execution time. Fig. 3
gives the module that is more related to our scheduling of moldable parallel tasks. There are
four phases for the scheduling of parallel tasks [26]: submission (Phase 1), mapping or
task-to-node allocation (Phase 2), parallelism decision (Phase 3), and sub-task scheduling
(Phase 4). Submission is the interface for users to submit their tasks. The users submit the task
and the related information of the task, such as the deadline, the speedup under different
parallelisms and so on. According to the system load of every cluster, mapping (or
task-to-node allocation) decides to allocate the coming tasks to which clusters. Parallelism
decision decides the number of assigned resources according to the system load, the deadline
of jobs, and other requirements. The third phase decides the parallelism which ensures that the
system meets the global load: (1) to maximize the number of finished tasks (2) to minimize the
average execution time. Phase 4 decides the scheduling of sub-tasks. Because we can not
forecast the system load with no errors, sometimes, we do not schedule those tasks as FCFS
(First Come First Service) policy. We may give some sub-tasks higher priorities of being
executed. The main models include: Accounting, SLM (System Load Monitoring), PDS
(Parallelism Decision Scheduler), STS (Sub-tasks Scheduler), LS (Local Scheduling of
sub-tasks).

Cluster 1

CPU 1

CPU ...

CPU 2

LS 1

LS 3

STSPDSSLMAccounting λ

USER

USER

Cluster 2

CPU 1

CPU ...

CPU 2LS 2

Cluster 3

CPU 1

CPU ...

CPU 2

Fig. 3. Scheduling framework of moldable parallel tasks

Accounting: a user submits a moldable parallel task to the system through the Accounting
tool. The user not only submits the code and the related data of the job, but also submits the
relation between the parallelism and the execution time of the task. Accounting also holds the
responsibilities such as ensuring every task is a secure task, recording the behavior of users,
and so on. In summary, Accounting gives the interface for users to submit their tasks and the
related information to tasks to the system.

SLM: SLM forecasts the system load information according to load information of all
clusters. LS (Local Scheduler 1~3) reports the system load to SLM and SLM forecasts the
system load according to the report from LS. SLM decides whether permits the new coming
task to enter the system according to the forecast of the system load.

PDS: according to the forecast system load, PDS decides the number of assigned resources.
PDS decides the parallelism of the task according to: (1) the system load, with the system load
increasing, the number of resources drops; (2) the relation between the execution time and the
parallelism, which is decided by the task. PDS gives the parallelism to those tasks and the
parallelism can not be chanage during the execution.

4356 Jianmin Li : Resource management for moldable parallel tasks supporting slot time in the Cloud

STS: according to the load information from different clusters, such as LS 1 and LS 2, STS
decides to assign the parallel sub-tasks to which clusters. STS also considers the system load
and the deadline, and decides the scheduling order of all parallel sub-tasks. Sometimes, the
scheduling order of the parallel sub-tasks may not be FCFS. Some sub-tasks can be brought
forward because other sub-tasks have deadlines close to the deadline.

Under the model, the four phrases (submission, deciding parallelism, task-to-cluster
allocation, sub-task scheduling) work together to schedule resources. At first, we estimate the
system load according to the system load of different clusters (submission), and then
according to the speedup of parallel tasks and other requirements (deadline) to the tasks,
decide the number of assigned resources (deciding parallelism). The speedup of the parallel
task gives the relation between the number of assigned resources and the execution time. After
we get the speedup of different tasks, we decide to assign how many resources to tasks
(task-to-cluster allocation) and schedule sub-tasks accordingly (sub-task scheduling). LS is in
charge of the local resources and ensures the task can be finished before its deadline even we
can not get an accurate speedup. LS is in charge of the resource virtualization, including the
role for VM consolidation, resource allocations and monitoring of the request scattered in
various data centers. If the system load is very low, and it can shut down some VMs to
enhance the resource utility. On the contrary, if it finds the system has a higher system load, it
may use the DVFS [29] technology to make the CPU work with a higher speedup.

From the system model, we know that there are two main problems in the scheduling: how
to decide the parallelism and how to schedule those sub-tasks of all parallel tasks.

4.2 An analysis of the system
As we know that, the parallelism is decided by the system load. If the system has a low system
load, we can give the task more resources to shorten the execution time; on the contrary, if the
system has a high load, we can just assign the resources to ensure the task can be finished
before its deadline. We call the parallelism reference parallelism which makes every task have
the same normalized execution time, and every task has the minimum execution time without
considering the deadline and other requirements.

The problem is the system load is dynamic especially for moldable parallel tasks. There are
two kinds of system loads: maximum system load (maxsl) and minimum system load (minsl).
maxsl and minsl are the system loads when all tasks have the maximum parallelism (𝑚𝑖𝑛𝑝𝑖 in
formula (1)) or minimum parallelism (𝑚𝑎𝑥𝑝𝑖 in formula (2)).We calculate the system load
under the two assumptions: (1) the task has no deadline; (2) the system load is average
allocated to the time from the task arrival to the deadline. We suppose that there are TN tasks
which arrive before the slot time now and have a deadline more than now.

𝐽𝑠𝑒𝑡 = {𝐽𝑎𝑖𝑑|𝑇𝑁 ≥ 𝑎𝑖𝑑 ≥ 1} (2)

The processing ability of the system is TP (which is denoted by the number of standard
computing resources). Consumed resources that when the system has the maximum
parallelism (𝑐𝑟𝑚𝑎𝑥) and minimum parallelism (crmin) are:

𝑐𝑟𝑚𝑎𝑥 = ∑ 𝑝𝑙𝑖
𝑗𝑚𝑎𝑥∗𝑒𝑡𝑖

𝑗𝑚𝑎𝑥

(𝑑𝑙𝑖−𝑎𝑟𝑖)∗𝑇𝑃
𝑇𝑁
1 (3)

𝑐𝑟𝑚𝑖𝑛 = ∑ 𝑝𝑙𝑖
𝑗𝑚𝑖𝑛∗𝑒𝑡𝑖

𝑗𝑚𝑖𝑛

(𝑑𝑙𝑖−𝑎𝑟𝑖)∗𝑇𝑃
𝑇𝑁
1 (4)

javascript:;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, Sepember 2019 4357

Where, 𝑗𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑝𝑖 and 𝑗𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑝𝑖.
So:

𝑚𝑖𝑛𝑠𝑙 = 𝑚𝑖𝑛 (𝑐𝑟𝑚𝑖𝑛 𝑇𝑃⁄ , 1) (5)

𝑚𝑎𝑥𝑠𝑙 = 𝑚𝑎𝑥 (𝑐𝑟𝑚𝑎𝑥 𝑇𝑃⁄ , 1) (6)

In formulas (5) and (6), the functions max and min return the maximum and the minimum.
There are three cases in the scheduling:
Case 1: 𝑚𝑎𝑥𝑠𝑙 = 1. In this case, we can allocate as many resources as possible to the task.

In other words, the task can be executed with the maximum parallelism.
Case 2: 𝑚𝑖𝑛𝑠𝑙 = 1. In this case, even every task is executed under minimum parallelism,

there are some tasks that cannot be finished as request.
Case 3: 𝑚𝑖𝑛𝑠𝑙 ≤ 𝑚𝑎𝑥𝑠𝑙 ≤ 1. In this case, we need to decide the parallelism of different

tasks.
In case 1, we have no problem in the scheduling; and in Case 3, we have no methods to

meet the scheduling requirement. So, our research focuses on Case 2. First, we need to
normalize the execution time of parallel tasks to make them have a scope of [0, 1]. According
to formula (1), we set the normalized execution time 𝑒𝑡𝑖

𝑗 of the task 𝑡𝑖 as 𝑛𝑒𝑡𝑖
𝑗:

𝑛𝑒𝑡𝑖
𝑗 = (𝑒𝑡𝑖

𝑗 − 𝑚𝑖𝑛 (𝑒𝑡𝑖∗)) (𝑚𝑎𝑥 (𝑒𝑡𝑖∗)� −𝑚𝑖𝑛 (𝑒𝑡𝑖∗)) (7)

𝑒𝑡𝑖∗ is the set of execution time under different parallelisms for the task 𝑡𝑖. 𝑚𝑎𝑥 (𝑒𝑡𝑖∗) and
𝑚𝑖𝑛 (𝑒𝑡𝑖∗) are the maximum and minimum execution time.

Fig. 4. Execution time of WRF under different parallelisms

Fig. 5. Execution time of GRAPES under different parallelisms

4358 Jianmin Li : Resource management for moldable parallel tasks supporting slot time in the Cloud

Fig. 4 and Fig. 5 give the execution time of WRF (Weather Research and Forecasting
model) and GRAPES (Global/Regional Assimilation and Prediction Enhanced System) under
different parallelisms (the two models are executed on the same configuration). WRF and
GRAPES are widely used in the weather forecast. We can find that: (1) the execution time has
changed with different scopes; (2) the execution time has different trends; (2) GRAPES and
WRF have different scope of parallelism. Those differences make how to decide parallelism a
difficulty. So, to ensure the execution time has the same scope, formula (7) is used to
normalize the execution time. Fig. 6 and Fig. 7 are the normalized execution time of GRAPES
and WRF. We find that the normalized data has the same trend with the original data.

Fig. 6. Normalized execution time of WRF under different parallelisms

Fig. 7. Normalized execution time of GRAPES under different parallelisms

5. Scheduling method for mold parallel tasks

5.1 Resource scheduling for moldable parallel tasks to decide normalized
execution time
We know that, the system load and the deadline of tasks play an important role to decide the
parallelism. First, we need to get the available parallelism that ensures the task can be finished
before its deadline. For the task 𝑡𝑖, suppose that the scope of available parallelisms is [𝑎𝑣𝑖𝑝𝑖,
𝑚𝑎𝑥𝑝𝑖] (𝑎𝑣𝑖𝑝𝑖 ≥ 𝑚𝑖𝑛𝑝𝑖). Using formula (7), the available parallelism can be denoted as
[𝑛𝑎𝑣𝑖𝑝𝑖 , 1]. When the task 𝑡𝑖 is executed under the state < 𝑝𝑙𝑖

𝑗𝑠𝑒𝑙 , 𝑒𝑡𝑖
𝑗𝑠𝑒𝑙 , 𝑠𝑝𝑖

𝑗𝑠𝑒𝑙 > (the
parallelism 𝑝𝑙𝑖

𝑗𝑠𝑒𝑙, the execution time 𝑒𝑡𝑖
𝑗𝑠𝑒𝑙, and the speedup 𝑠𝑝𝑖

𝑗𝑠𝑒𝑙), the task average adds
the load to every slot of the system and it is denoted by 𝑙𝑑𝑖

𝑗𝑠𝑒𝑙:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, Sepember 2019 4359

 𝑙𝑑𝑖
𝑗𝑠𝑒𝑙 =

𝑝𝑙𝑖
𝑗𝑠𝑒𝑙∗𝑒𝑡𝑖

𝑗𝑠𝑒𝑙

(𝑑𝑙𝑖−𝑎𝑟𝑖)∗𝑇
 (8)

𝑇 is the computing ability of all resources of every slot. We suppose that every task has the
same normalized execution time, denoted by 𝑎𝑣𝑔𝑝𝑙. Algorithm 1 gives the method to get the
normalized execution time:

Algorithm 1: Getnet(𝑇, I, Nslot) // gets the normalized execution time, 𝑇 is the total processing ability

of all resources, I is the number of tasks, Nslot is the total number of slots in the scheduling;

1: 𝑠𝑛𝑒𝑡 = 1; // suppose the selected normalized execution time is 1

2: 𝑏𝑒𝑔𝑒𝑡 = 0, 𝑒𝑛𝑑𝑒𝑡 = 1; // change the normalized parallelism from 0 to 1 without taking account of

the deadline;

3: 𝑚𝑖𝑛𝑠𝑡𝑒𝑝 = 1
maxet(𝑚𝑖𝑛𝑝𝑖)−minet (𝑚𝑎𝑥𝑝𝑖)

; // get the minstep;

4: 𝑒𝑔𝑒𝑡 = 0;

5: While (𝑒𝑛𝑑𝑒𝑡 − 𝑏𝑒𝑔𝑒𝑡)> 𝑚𝑖𝑛𝑠𝑡𝑒𝑝 do

6: For 𝑖 = 1: 𝐼 do

7: According to the normalized execution time to get the execution time;

8: According to the execution time to get the execution state of different tasks;

9: Suppose 𝑡𝑖 average adds load to every slot according to formula (8);

//suppose the normalized execution time is 𝑠𝑛𝑒𝑡;

10: Get the minimum load minl of every slot;

11: If minl>1 then

12: 𝑒𝑛𝑑𝑒𝑡 = (𝑒𝑛𝑑𝑒𝑡 + 𝑏𝑒𝑔𝑒𝑡)/2;

13: Else

14: 𝑏𝑒𝑔𝑒𝑡 = (𝑒𝑛𝑑𝑒𝑡 + 𝑏𝑒𝑔𝑒𝑡)/2;

15: 𝑠𝑛𝑒𝑡 = (𝑒𝑛𝑑𝑝𝑙 + 𝑏𝑒𝑔𝑝𝑙)/2;

16: Get the execution state of different tasks when the normalized execution time is 𝑠𝑛𝑒𝑡.

The main idea of Algorithm 1 is using binary search to find the best normalized execution

time, which is the maximum parallelism which ensures that every slot is not overloaded (less
than 1). Line 1 supposes that the normalized execution is 1. Line 2 supposes that the available
normalized execution has the range of [0,1]. 𝑏𝑒𝑔𝑒𝑡 and 𝑒𝑛𝑑𝑒𝑡 are lower bound and upper
bound of execution time. Line 3 gets the minimum step (𝑚𝑖𝑛𝑠𝑡𝑒𝑝). maxet(𝑚𝑖𝑛𝑝𝑖) returns to
the maximum execution time when every task has the lowest parallelism. minet(𝑚𝑎𝑥𝑝𝑖)
returns to the minimum execution time when every task has the highest parallelism. Lines 5-14
get the parallelism until the range is less than the minimum step 𝑚𝑖𝑛𝑠𝑡𝑒𝑝. Lines 6-9 calculate
the load of every slot when the normalized execution is 𝑠𝑛𝑒𝑡. First, we get the execution time
according to the normalized execution time (line 7), then we get the execution state of different
tasks (line 8), and lastly, the task average adds load to every slot. Line 10 gets the minimum

v

4360 Jianmin Li : Resource management for moldable parallel tasks supporting slot time in the Cloud

load of every slot (minl). Lines 11~14 check whether the load minl is more than 1. If it is, the
upper bound 𝑒𝑛𝑑𝑒𝑡 becomes (𝑒𝑛𝑑𝑒𝑡 + 𝑏𝑒𝑔𝑒𝑡)/2 (line 13); otherwise, the lower bound
𝑒𝑛𝑑𝑒𝑡 becomes (𝑒𝑛𝑑𝑒𝑡 + 𝑏𝑒𝑔𝑒𝑡)/2 (line 15). Line 16 returns to the execution state of
different tasks.

5.2 Resource scheduling for moldable parallel tasks to decide execution time
considering deadlines

Algorithm 2: Selet(I, 𝑠𝑛𝑒𝑡) // I is the number of tasks, 𝑠𝑛𝑒𝑡 is the selected normalized execution time.

1: Get unscheduled tasks (𝑢𝑛𝑡) when all tasks are executed under normalized execution time 𝑠𝑛𝑒𝑡

under AFCFS policy;

2: Sort tasks in 𝑢𝑛𝑡 as the ascending order of the arrival time;

3: For every task 𝑡𝑖 in 𝑢𝑛𝑡 do

4: Get tasks which arrive before 𝑡𝑖 and have the deadline that is less than the deadline of 𝑡𝑖,

 denoted by 𝑙𝑓𝑡𝑖;

5: Sch1(𝑙𝑓𝑡𝑖, 𝑡𝑖);

6: If Checksch(𝑡𝑖) then

7: Schedule 𝑡𝑖;

8: Else

9: Get tasks which arrive after 𝑡𝑖 and have the deadline that is less than the deadline of 𝑡𝑖,

 denoted by 𝑚𝑖𝑑𝑡𝑖;

10: Sch2(𝑚𝑖𝑑𝑡𝑖, 𝑡𝑖);

11: If Checksch(𝑡𝑖) then

12: Schedule 𝑡𝑖;

13: Else

14: Get tasks which arrive after 𝑡𝑖 and have the deadline that is more than the deadline of 𝑡𝑖,

 denoted by 𝑟𝑔𝑡𝑖;

15: Sch3(𝑟𝑔𝑡𝑖, 𝑡𝑖);

16: If Checksch(𝑡𝑖) then

17: Schedule 𝑡𝑖;

18: Else

19: drop 𝑡𝑖;

In fact, some tasks may not be finished as our request under the selected normalized execution
time because of the deadline. So, we should give details to find the right execution time to
meet the deadline. Algorithm 2 is used to get the selected execution time of every task. We get
the unscheduled tasks 𝑢𝑛𝑡 (line 1), and then re-schedule the tasks in 𝑢𝑛𝑡. In Algorithm 2, I is
the number of tasks, snet is the selected normalized execution time.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, Sepember 2019 4361

As shown in Fig. 8 and Algorithm 2, jobs arrive before 𝐴𝑟𝑖 and have a deadline which is
less than 𝐷𝑙𝑖, denoted by 𝑙𝑓𝑡𝑖, which would be scheduled as Sch1(𝑟𝑔𝑡𝑖) (line 5); tasks arrive
after 𝐴𝑟𝑖 and have a deadline which is less than 𝐷𝑙𝑖 , denoted by 𝑚𝑖𝑑𝑡𝑖 , which would be
scheduled as Sch2(𝑚𝑖𝑑𝑡𝑖) (line 10); tasks arrive after 𝐴𝑟𝑖 and have a deadline which is more
than 𝐷𝑙𝑖, denoted by 𝑟𝑔𝑡𝑖, which would be scheduled as Sch3(𝑟𝑔𝑡𝑖) (line 15). Checksch(𝑡𝑖)
checks whether the task 𝑡𝑖 can be scheduled before the deadline.

Algorithm 3: Sch1(𝑙𝑓𝑡𝑖, 𝑡𝑖); // trying to scheduling the task 𝑡𝑖 based on reschedule 𝑙𝑓𝑡𝑖

1: 𝑠𝑡𝑒𝑡 = 𝑠𝑛𝑒𝑡; // 𝑠𝑛𝑒𝑡 records selected normalized time

2: 𝑠𝑎𝑣𝑟 = 0, 𝑚𝑖𝑛𝑟 = 0, 𝑛𝑠𝑡𝑒𝑡 = 𝑠𝑛𝑒𝑡; // 𝑠𝑎𝑣𝑟 records saved computing resources, 𝑚𝑖𝑛𝑟 records

the minimum 𝑠𝑎𝑣𝑟 under different normalized execution time;

3: While 𝑡𝑖 cannot be allocated do

4: For every task 𝑡𝑒𝑚𝑝 ∈ 𝑙𝑓𝑡𝑖 do

5: If 𝑡𝑒𝑚𝑝 can be allocated before 𝐴𝑟𝑖 when the normalized execution time is 𝑛𝑠𝑡𝑒𝑡, then

6: Calculate the saving computing resources 𝑛𝑠𝑎𝑣𝑟 for the task 𝑡𝑖;

7: 𝑠𝑎𝑣𝑟 = 𝑠𝑎𝑣𝑟 + 𝑛𝑠𝑎𝑣𝑟;

8: Else // for tasks that cannot be finished before 𝐴𝑟𝑖

9: 𝑡𝑒𝑚𝑝1 = 𝑠𝑛𝑒𝑡, 𝑡𝑒𝑚𝑝2 = 𝑠𝑛𝑒𝑡;

10: While 𝑡𝑒𝑚𝑝1 > 𝑚𝑖𝑛𝑠𝑡𝑒𝑝 do

11: 𝑡𝑒𝑚𝑝1=𝑡𝑒𝑚𝑝1−𝑚𝑖𝑛𝑠𝑡𝑒𝑝;

12: Get the minimum saving resource for reducing normalized execution time (𝑠𝑎1);

13: While 𝑡𝑒𝑚𝑝2 < 1 do

14: 𝑡𝑒𝑚𝑝2=𝑡𝑒𝑚𝑝2−𝑚𝑖𝑛𝑠𝑡𝑒𝑝;

15: Get the minimum saving resource for reducing normalized execution time (𝑠𝑎2);

16: Comparing 𝑠𝑎1 and 𝑠𝑎2, and selecting the bigger (as 𝑠𝑎);

17: If (𝑠𝑎𝑣𝑟 + 𝑠𝑎) < 𝑚𝑖𝑛𝑟 then

18: 𝑚𝑖𝑛𝑟 = 𝑠𝑎𝑣𝑟, 𝑠𝑡𝑒𝑡 = 𝑛𝑠𝑡𝑒𝑡;

19: 𝑠𝑡𝑒𝑡 = 𝑠𝑡𝑒𝑡 −𝑚𝑖𝑛𝑠𝑡𝑒𝑝;

Sch1(lfti)

Ari Dli

Sch2(midti)

Sch3(rgti)

ti

Fig. 8. The scheduling methods for different kinds of tasks

4362 Jianmin Li : Resource management for moldable parallel tasks supporting slot time in the Cloud

For different kinds of jobs (𝑙𝑓𝑡𝑖, 𝑚𝑖𝑑𝑡𝑖 and 𝑟𝑔𝑡𝑖), we give different policies.
For jobs in 𝑟𝑔𝑡𝑖, if the job can be finished before 𝐴𝑟𝑖, we always select the maximum

execution time but ensure they can be finished before 𝐴𝑟𝑖 (lines 6~9 Algorithm 3, the same for
the following); otherwise, two methods – enhancing (lines 15~18) or reducing (lines 11~14)
the normalized execution time are used to check which has the minimum saving computing
resources. Algorithm 3 gives the details. 𝑠𝑛𝑒𝑡 records selected normalized time. 𝑠𝑎𝑣𝑟 records
saved computing resources, 𝑚𝑖𝑛𝑟 records the minimum 𝑠𝑎𝑣𝑟 under different normalized
execution time. First of all, we suppose that the jobs are executed within the normalized
execution time, to check whether they would meet the deadline (lines 3~5). Then, for jobs that
can be finished before the arrival time of 𝑡𝑖 (𝐴𝑟𝑖), we reduce the normalized execution time
with a step of 𝑚𝑖𝑛𝑠𝑡𝑒𝑝 (line 6, Algorithm 3), to calculate the saving computing resources
(𝑛𝑠𝑎𝑣𝑟) (line 7), until it can meet the deadline. For the task that cannot be finished before 𝐴𝑟𝑖,
enhancing (lines 10~12) and reducing normalized execution time (lines 13~15) are used to get
the minimum saving execution time, and we select the policy which saves more computing
resources (line 19). At last, we choose the solution which saves more computing resources.

For jobs in 𝑚𝑖𝑑𝑡𝑖, our policy is simple, we just want to enhance the normalized execution
time, and to reduce the system load. The reason is, non-linear speedup moldable parallel tasks
enhance the computing requirement with the enhancement of speedup (reducing the
normalized execution time). The algorithm for 𝑚𝑖𝑑𝑡𝑖 is simple, so, we do not give it
(Sch2(𝑚𝑖𝑑𝑡𝑖)) in details.

Algorithm 4: Sch3(𝑟𝑔𝑡𝑖)

1: 𝑠𝑡𝑒𝑡 = 𝑠𝑛𝑒𝑡; // 𝑠𝑛𝑒𝑡 records selected normalized time

2: 𝑚𝑖𝑛𝑟 = 0; // 𝑚𝑖𝑛𝑟 records the minimum 𝑠𝑎𝑣𝑟 under different normalized execution time;

3: While 𝑡𝑖 cannot be allocated do

4: 𝑠𝑎𝑣𝑟 = 0, 𝑎𝑠𝑟 = 0;// 𝑠𝑎𝑣𝑟 and 𝑎𝑠𝑎𝑣𝑟 record the saving computing resources before the

 deadline 𝐷𝑙𝑖 and after 𝐷𝑙𝑖

5: While 𝑡𝑒𝑚𝑝1 < 1 do

6: For every task 𝑡𝑒𝑚𝑝 ∈ 𝑟𝑔𝑡𝑖 do

7: If 𝑡𝑒𝑚𝑝 can be finished before 𝐷𝑙𝑖 when the normalized execution time is 𝑛𝑠𝑡𝑒𝑡 then

8: Calculate the saving computing resources 𝑛𝑠𝑎𝑣𝑟 for the task 𝑡𝑖 before 𝐷𝑙𝑖;

9: Calculate the saving computing resources 𝑎𝑠𝑎𝑣𝑟 for the task 𝑡𝑖 after 𝐷𝑙𝑖;

10: 𝑠𝑎𝑣𝑟 = 𝑠𝑎𝑣𝑟 + 𝑛𝑠𝑎𝑣𝑟;

11: 𝑎𝑠𝑟 = 𝑎𝑠𝑟 + 𝑎𝑠𝑎𝑣𝑟;

12: 𝑡𝑒𝑚𝑝1= 𝑡𝑒𝑚𝑝1 + 𝑚𝑖𝑛𝑠𝑡𝑒𝑝;

13: If (𝑎𝑣𝑟 < 𝑚𝑖𝑛𝑟) and (𝑎𝑠𝑟 > 0) then

14: 𝑚𝑖𝑛𝑟 = 𝑠𝑎𝑣𝑟, 𝑠𝑡𝑒𝑡 = 𝑛𝑠𝑡𝑒𝑡;

15: If Checksch(𝑡𝑖) then

16: Schedule 𝑡𝑖;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, Sepember 2019 4363

For jobs in 𝑟𝑔𝑡𝑖, the scheduling method must ensure: (1) reducing the workload before 𝐷𝑙𝑖
(reduce the workload between 𝐴𝑟𝑖 and 𝐷𝑙𝑖 for the unfinished task 𝑡𝑖) and (2) after 𝐷𝑙𝑖
(reducing the workload after 𝐷𝑙𝑖 for the future unfinished jobs). For (1), we must ensure
reducing the workload until the task 𝑡𝑖 can be executed as requested. Different from 𝑙𝑓𝑡𝑖 ,
which is to minimize saving computing resources. Because we do not want to enhance the
execution time if there are enough resources supplement. For (2), we just ensure that the task
𝑡𝑖 consumes less resources when it is executed under normalized execution time. Algorithm 4
gives the details of scheduling those tasks. In line 1, 𝑠𝑛𝑒𝑡 records the selected normalized time.
𝑚𝑖𝑛𝑟 records the minimum 𝑠𝑎𝑣𝑟 under different normalized execution time in line 2. 𝑠𝑎𝑣𝑟
and 𝑎𝑠𝑎𝑣𝑟 record the saving computing resources before the deadline 𝐷𝑙𝑖 and after 𝐷𝑙𝑖 (line 4,
Algorithm 4). We check unscheduled task in 𝑟𝑔𝑡𝑖 (lines 3~16), enhancing the normalized
execution with a step of 𝑚𝑖𝑛𝑠𝑡𝑒𝑝 (line 12), to get the saving computing resources before the
deadline 𝐷𝑙𝑖 (𝑛𝑠𝑎𝑣𝑟 , line 8) and after 𝐷𝑙𝑖 (𝑎𝑠𝑎𝑣𝑟 , line 9). Line 8 calculates the saving
computing resources 𝑛𝑠𝑎𝑣𝑟 for the task 𝑡𝑖 before 𝐷𝑙𝑖. Line 9 calculates the saving computing
resources 𝑎𝑠𝑎𝑣𝑟 for the task 𝑡𝑖 after 𝐷𝑙𝑖 . We check whether the scheduling solution has
minimum saving computing resources (line 15), and at the same time, consumed less
resources after 𝐷𝑙𝑖 (line 13). If it is, we check whether the task 𝑡𝑖 can be scheduled (lines
15~16). If it is, we schedule it (line 16).

6. Simulations and comparisons
In the simulation, we will compare our method HSRET with CBSP [26], All-EFT [11] and
AFCFS (Adapted First Come First Served) [5, 23, 25]. We have introduced CBSP and
All-EFT in Section 2. AFCFS is widely used in many systems, and we suppose that AFCFS
schedules parallel tasks as “First Come First Served” policy, and randomly select one cluster
which ensures the parallel task can be finished before its deadline. We suppose AFCFS always
prefer to select the minimum parallelism that ensures the tasks can be executed before their
deadlines.

6.1 Simulation environment
In our simulation, there are 10 clusters, each of which has 1000 computing nodes (CPU).
Because the sub-tasks of a parallel task always need to exchange information with each other,
a task can not be parallelly executed to two clusters. In other words, a task can only be
parallelly executed in one cluster. We model our simulation as Fig. 3. There are 10 LCs
(LC1~LC10) in our system. Most of clusters only have a few CPUs
(1~3)(http://www.cs.huji.ac.il/labs/parallel/workload), so we suppose there are only one kind
of CPUs in one cluster. All nodes in one Cluster have the same computing capacity and the
computing speed of every node is [0.8, 1.2] times to a standard computing resource. In our
simulation, there are two kinds of parallel tasks in the scheduling: WRF and GRAPES. The
two kinds of tasks have the same ratio in the number of tasks belonging to WRF and GRAPES.
We suppose that the speedup has the same value to WRF or GRAPES (in Fig. 4 or Fig. 5).
Suppose that the length of every parallel task obeys uniform distribution in [500, 9500]
minutes (under the minimum parallelism for WRF or for GRAPES) when they are parallelly
executed on some standard resources (with minimum parallelism in Figs. 4 and 5). According
to the speed of selected CPUs and the parallelism, we get the execution time. The deadline of
every parallel task is a random in [1.5, 5] times of the execution time when the parallel task has
the minimum parallelism. To get the accurate execution time under different parallelisms of
the parallel tasks is very difficult, so we will investigate our scheduling method in different

4364 Jianmin Li : Resource management for moldable parallel tasks supporting slot time in the Cloud

accuracies of the forecast of execution time (ρ), 100%, 95%, 90%. “100%” means that we can
get an absolutely accurate value in forecasting execution time under different parallelisms.
“95%” means that if we forecast the execution time is 1, then the actual execution time would
be changed in [1, 1.05]. “90%” means that if we forecast the execution time is 1, then the
actual execution time would be changed in [1, 1.1].

6.2 Comparison and discussion
In the simulation, we will compare four methods in AET (Average execution time), AWT
(Average waiting time), and PUT (percentage of unfinished tasks before deadline). We will
evaluate two kinds of slot time: 360 minutes and 720 minutes. We consider the system when it
has a relatively high system load, so when the slot time is 180 (mins), the arrival rate λ is
changed from 100 to 150, with a step of 10; when the slot time is 360 (mins), the arrival rate is
changed from 200 to 300, with a step of 20. We suppose that the number of arriving tasks in
every slot time is a random in [1, 2*λ-1]. We will test those methods in 1000000 slot time.

6.2.1 Comparison of AET

Fig. 9. AET at different arrival rates when slot time=360

Fig. 10. AET at different arrival rates when slot time=720

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, Sepember 2019 4365

Figs. 9 and 10 are the AET of different methods at different arrival rates and with different
accuracies about the forecast of execution time under different parallelisms. Fig. 9 is the AET
when the slot time is 360 (minutes) and Fig. 10 is the AET when the slot time is 720 (minutes).

Generally, no matter which slot time is, the AET of all four methods are increasing with the
enhancement of arrival rates. The order of AET from big to small is: AFCFS, CBSP,
ALL-EFT and HSRET. AFCFS has the largest value in AET because it always makes every
task have the minimum resources to ensure it can be finished before its deadline. ALL-EFT
always ensures the task to be executed in the shortest time, so it has a relatively lower value in
AET. CBSP has three steps and it always assigns resources according to the system load. So,
the AET of CBSP has a tradeoff between AFCFS and ALL-EFT. HSRET considers the system
load, and then according to the system load and other requirements (deadline, ρ) to schedule
resources. Thus it holds the lowest value in AET.

All methods have an increasing trend with the increase of arrival rate and the decrease of ρ.
When the slot time is 360 mins, the average AETs of ALL-EFT, CBSP, AFCFS and HSRET
are 5.2153E+03, 5.4145E+03, 5.8336E+03 and 4.3674E+03, respectively. To ALL-EFT,
CBSP, AFCFS, HSRET average reduces by 16.26%, 19.34% and 25.13% in AET. When the
slot time is 720 mins, the average AETs of ALL-EFT, CBSP, AFCFS and HSRET are 5.3767
E+03, 5.6382 E+03, 6.1357 E+03 and 4.6249 E+03, respectively. To ALL-EFT, CBSP,
AFCFS, HSRET average reduces by 13.98%, 17.97% and 24.62%.

With the decrease of ρ, all methods have a little increase in AET. This is because it
becomes difficult and not accurate to predict the system load for all methods. For example,
HSRET under ρ = 90% increases by 9.45% and 18.02% to the AET when ρ = 95% and
ρ = 100% when the slot time is 360.

The value of slot time also has an effect on AET. The AETs (of all methods) have a smaller
value when the slot time is 720 (secs) compare to the AETs when the slot time is 360 (secs).
This is because with the increasing of slot time, more resource fragments are consumed for the
parallel tasks.

6.2.2 Comparison of AWT
Fig. 11 is the AWT of different methods at the arrival rate changed from 100 to 150 with a step
of 10. Fig. 12 is the AWT of different methods at the arrival rate changed from 200 to 300 with
a step of 20. Table 3 is the average AWT under different conditions.

The order of AWT from big to small is: ALL-EFT, CBSP, AFCFS, HSRET, no matter the
slot time is 360 (Fig. 11) or 720 (Fig. 12). To AWT of ALL-EFT, CBSP and AFCFS, and
AWT of HSRET 196.4, 124.0603 and 54.2381, about 34.91%, 25.3% and 19.02% when the
slot time is 360 (Fig. 11); HSRET average reduces by 204.0325, 122.8922 and 46.6326, about
34.48%, 24.07% and 10.74% in AWT when the slot time is 720 (Fig. 12).

ALL-EFT has the highest value in AWT, because ALL-EFT always waits for adequate
resources to shorten the execution time or to ensure the deadline requirement. CBSF
sometimes is required to wait for resources for the selected parallelism. We can find that
AFCFS has a lower value in AWT expecting HSRET, because AFCFS always allocate
resources once they come and with the smallest resources requirement. HSRET gets the initial
scheduling list as AFCFS, and then according to the initial list, gets an optimistic scheduling
result. So, HSRET always has the lowest value in AWT.

Compared to Section 6.2.1 about the AET, we find that there are some conflicts in AWT
and AET, especially for AFCFS and ALL-EFT. AFCFS always allocates tasks when the task
comes, so they have a lower value in AWT, but it always gives only the lowest resources to

4366 Jianmin Li : Resource management for moldable parallel tasks supporting slot time in the Cloud

ensure meeting the deadline of the task, so, it has a higher value in AET. Contrary to AFCFS,
ALL-EFT always makes the task execute in the shortest execution time under the system load
requirement, so it has a higher value in AET and a lower value in AWT.

The accuracy of ρ plays an important role for AWTs of all methods. AWTs of all methods
have a little increasing trend with the increasing of ρ. The reason is when we do not get a
inaccurate of ρ, some tasks may not be executed as we wish, and that makes other tasks wait
more time.

Fig. 11. AWT at different arrival rates when slot time=360

Fig. 12. AWT at different arrival rates when slot time=720

6.2.3 Comparison of PUT
Fig. 13 is the PUT of different methods when the arrival rate is changed from 100 to 150 with
a step of 10. Fig. 14 is the PUT of different methods when the arrival rate is changed from 200
to 300 with a step of 20.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, Sepember 2019 4367

Fig. 13. PUT at different arrival rates when slot time=360

Fig. 14. PUT at different arrival rates when slot time=720

In general, all methods increase with the enhancement of arrival rates and the value of ρ.
HSRET always has the lowest value in PUT, followed by AFCFS, CBSP and ALL-EFT,
respectively. HSRET always not only considers the deadline, but also considers the system
load, and based on the AFCFS policy, it optimizes the scheduling result to satisfy multiple
targets, so it has the best performance in PUT. AFCFS always gives tasks the smallest
resources to ensure they can be finished before deadlines, so it also has a relatively low value
in PUT, but at the same time, it has the highest value in AET (Section 6.2.1). ALL-EFT always
gives every task as many resources as possible under the system load, so it has relative low
value in AET, and at the same time, because of the dynamic of the system load, it does not
perform well in PUB. CBSP also has the same problem to HSRET, because there is a difficulty
for them to schedule resources in the dynamic load environment.

For Figs 13~14, we can find the accuracy of ρ , also plays an important role in the
scheduling result of PUT. PUTs of all methods with ρ = 100% increase by about 3% and 5%
to the condition when ρ = 95% and ρ = 90% . For example, PUT of HSRET under ρ =
100% enhances by 17.56% and 29.88% to the condition when ρ = 95% and ρ = 90% (when
the slot time is 360). With the drop of ρ, all methods have difficulty to forecast whether the
resources are enough to ensure those tasks can be finished before their deadlines. They always
save more resources to satisfy some other tasks when they need more resources than our

4368 Jianmin Li : Resource management for moldable parallel tasks supporting slot time in the Cloud

forecast.

6.3 Complexity analysis
Suppose the I is the number of tasks, the maximum parallelism of all tasks is maxp, the number
of cluster is cn, the maximum number of resources in a cluster is maxr.

Algorithm 1 tries to get the normalized execution time. The complexity of lines 5~15
(Algorihm 1) is maxp, and the complexity of lines 6~9 is I. So the complexity of Algorithm 1
is:

O(Algorithm 1) = O(𝐼𝑚𝑎𝑥𝑝 +𝑚𝑎𝑥𝑝 + 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑟)
In Algorithm 2, for every task (I is the number of tasks), according to the different kinds of

tasks, Sch1(), Sch2() and Sch3() are used to schedule those tasks to different clusters (the
number of clusters is cn). So, the complexity of Algorithm 2 is:

O(Algorithm 2) = �O(Sch1) + O(Sch2) + O(Sch3)� ∗ O(𝑐𝑛)
Algorithm 3 (Sch1) tries to search for scheduling method for the task 𝑡𝑖 (the number of

tasks is I) based on reschedule 𝑙𝑓𝑡𝑖 (We take the number of tasks in 𝑙𝑓𝑡𝑖 as a constant 𝑐𝑜𝑛1,
the resource number is 𝑚𝑎𝑥𝑟 ∗ 𝑐𝑛). So, the complexity of Algorithm 3 is:

O(Algorithm 3) = O(Sch1) = O(𝐼 ∗ 𝑐𝑜𝑛1)= O(𝐼)
Sch2 just schedules tasks (the number of tasks is I) to enhance the normalized execution

time and reduces the system load with maxp steps, so the complexity of Sch2:
O(Sch2) = O(𝑚𝑎𝑥𝑝 ∗ 𝐼)

Algorithm 4 (Sch3) tries to search for scheduling method for the task 𝑡𝑖 (the number of
tasks is I) based on reschedule 𝑟𝑔𝑡𝑖 (We take the number of tasks in 𝑟𝑔𝑡𝑖 as a constant 𝑐𝑜𝑛2).
So, the complexity of Algorithm 4 is:

O(Algorithm 4) = O(Sch3) = O(𝐼 ∗ 𝑐𝑜𝑛2)= O(𝐼)
So, the complexity of our method is:

O(Algorithm 1) + O(Algorithm 2)
= O(𝐼𝑚𝑎𝑥𝑝 + 𝑚𝑎𝑥𝑝+ 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑟) + �O(Sch1) + O(Sch2) + O(Sch3)�
∗ O(𝑐𝑛)

= O(𝐼𝑚𝑎𝑥𝑝 +𝑚𝑎𝑥𝑝 + 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑟) + (O(𝐼) + O(𝑚𝑎𝑥𝑝 ∗ 𝐼) + O(𝐼)) ∗
O(𝑐𝑛)

= O(𝐼𝑚𝑎𝑥𝑝 +𝑚𝑎𝑥𝑝 + 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑟) + O(𝐼 ∗ 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑝)
And most of time, we can get the normalized execution time for the system load (or the load

forecast), so, we can take the complexity of Algorithm 1 as O(1), and then the complexity of
our method becomes:

O(𝐼 ∗ 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑝)
For every task (O(𝐼)), AFCFS tries to search in every cluster (O(𝑐𝑛)), to find a parallelism

(O(𝑚𝑎𝑥𝑝)) to ensure finishing the task before its deadline, so the complexity of AFCFS is the
same as our method: O(𝐼 ∗ 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑝). ALL-EFT tris to select a parallelism (O(𝑚𝑎𝑥𝑝)) for
every task (O(𝐼)) in every cluster (O(𝑐𝑛)) to ensure that the task has the minimum execution
time, and repeat the step until all tasks have been scheduled (O(𝐼)). So, the complexity of
ALL-EFT is: O(𝐼2 ∗ 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑝). The complexity of CBSP is decided by the three steps:
firstly, determining of the computing clusters (O(𝑐𝑛)); secondly, determining the optimal
number of processors in each cluster(O(𝑐𝑛)); finally, placing the tasks on the appropriate
processors (O(𝐼 ∗ 𝑚𝑎𝑥𝑝)). So, the complexity of CBSP is O(𝐼 ∗ 𝑐𝑛2 ∗ 𝑚𝑎𝑥𝑝). In summary,
our method has the same complexity to AFCFS, and it is less than the complexity of ALL-EFT
and CBSP.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, Sepember 2019 4369

7. Conclusion and future work
In this paper, we pay attention to the scheduling of moldable parallel tasks with non-linear
speedup. We try to normalize those parallel tasks and make them have the same scope of
execution time. Based on our analysis, we propose a scheduling method HSRET in the paper.
First, HSRET tries to schedule tasks to make all tasks executed at the same reference execution
time, and then according to the details of the deadline and other multiple scheduling targets,
HSRET gets an initial scheduling result, and based on the initial result, some optimized
methods are used to improve it. Simulation results show that our method has performed better
in AET, AWT and PUT. Recently, for most of research work on the energy consumption of the
parallel tasks, those researchers try to find some scheduling methods to save the energy
consumption, and at the same time, to keep other metrics. As future work, we try to use the
normalized execution time to work on the energy-aware [30] scheduling for moldable parallel
tasks.

Acknowledgment
This work was supported in part by a grant from National Natural Science Foundation of
China (No. 61672442),Fujian Province Science and Technology Plan Project (No.
2016Y0079),Xiamen Science and Technology Plan Project (No. 3502Z20183055), high-level
talents program of Xiamen University of Technology (No. YKJ16020R)

Reference
[1] Thoman P, Dichev K, Heller T, et al., “A taxonomy of task-based parallel programming

technologies for high-performance computing,” Journal of Supercomputing, 74(4), 1422-1434,
2018. Article (CrossRef Link).

[2] Feitelson D G, Rudolph L, “Toward convergence in job schedulers for parallel supercomputers,”
Job Scheduling Strategies for Parallel Processing. Springer Berlin Heidelberg, 1-26, 1996.
Article (CrossRef Link).

[3] Fan L, Zhang F, Wang G, et al., “An effective approximation algorithm for the Malleable Parallel
Task Scheduling problem,” Journal of Parallel & Distributed Computing, 72(5), 693-704, 2012.
Article (CrossRef Link).

[4] Memeti S, Pllana S, “PAPA: A Parallel Programming Assistant Powered by IBM Watson
Cognitive Computing Technology,” Journal of Computational Science, 26, 275-284, 2018.
Article (CrossRef Link).

[5] Hao Y, Wang L, Zheng M, “An adaptive algorithm for scheduling parallel jobs in meteorological
Cloud,” Knowledge-Based Systems, 98(C), 226-240, 2016. Article (CrossRef Link).

[6] Wen Na, Liu Z, Li L, “Direct ENSO impact on East Asian summer precipitation in the developing summer,”
Climate Dynamics, 52(11), 6799-6815, 2019. Article (CrossRef Link).

[7] Chen C Y, “An Improved Approximation for Scheduling Malleable Tasks with Precedence
Constraints via Iterative Method,” IEEE Transactions on Parallel & Distributed Systems, 28(9),
1937-1946, 2018. Article (CrossRef Link).

[8] Wu X, Loiseau P, “Algorithms for Scheduling Deadline-Sensitive Malleable Tasks,” in Proc. of
Allerton Conference on Communication, Control, and Computing, 530-537, 2015.
Article (CrossRef Link).

[9] Shaoqi Wang,Wei Chen, Xiaobo Zhou, Liqiang Zhang,Yin Wang, “Dependency-aware Network
Adaptive Scheduling of Data-Intensive Parallel Jobs,” IEEE Transactions on Parallel &
Distributed Systems, 30(3), 515-529, 2019. Article (CrossRef Link).

https://doi.org/10.1007/s11227-018-2238-4
http://dx.doi.org/10.1007/BFb0022284
https://doi.org/10.1016/j.jpdc.2012.01.011
https://doi.org/10.1016/j.jocs.2018.01.001
https://doi.org/10.1016/j.knosys.2016.01.038
https://doi.org/10.1007/s00382-018-4545-0
https://doi.org/10.1109/TPDS.2018.2813387
https://doi.org/10.1109/ALLERTON.2015.7447050
https://doi.org/10.1109/TPDS.2018.2866993

4370 Jianmin Li : Resource management for moldable parallel tasks supporting slot time in the Cloud

[10] Verner, Uri, A. Mendelson, and A. Schuster, “Extending Amdahl's Law for Multicores with Turbo
Boost,” IEEE Computer Architecture Letters, 16(1), 30-33, 2017. Article (CrossRef Link).

[11] Wang Y R, Huang K C, Wang F J, “Scheduling online mixed-parallel workflows of rigid tasks in
heterogeneous multi-cluster environments,” Future Generation Computer Systems, 60(C), 35-47,
2016. Article (CrossRef Link).

[12] Saifullah A, Agrawal K, Lu C, et al., “Multi-core Real-Time Scheduling for Generalized Parallel
Task Models,” in Proc. of Real-Time Systems Symposium. IEEE, 217-226, 2012.
Article (CrossRef Link).

[13] Casanova H, Desprez F, Suter F, “Minimizing Stretch and Makespan of Multiple Parallel Task
Graphs via Malleable Allocations,” in Proc. of International Conference on Parallel Processing.
IEEE, 71-80, 2010. Article (CrossRef Link).

[14] Xin Y, Xie Z Q, Yang J., “A load balance oriented cost efficient scheduling method for parallel
tasks,” Academic Press Ltd., 81, 37-46, 2017. Article (CrossRef Link).

[15] Sanders P, Speck J, “Energy efficient frequency scaling and scheduling for malleable tasks,” in
Proc. of International Conference on Parallel Processing. Springer-Verlag, 167-178, 2012.
Article (CrossRef Link).

[16] Sánchez D, Isern D, Ángel Rodríguez-Rozas, et al., “Agent-based platform to support the
execution of parallel tasks,” Expert Systems with Applications, 38(6), 6644-6656, 2011.
Article (CrossRef Link).

[17] Evermann J, “Scalable Process Discovery Using Map-Reduce,” IEEE Transactions on Services
Computing, 9(3), 469-481, 2016. Article (CrossRef Link).

[18] Nagarajan V, Wolf J, Balmin A, et al., “Malleable scheduling for flows of jobs and applications to
MapReduce,” Journal of Scheduling, 22(4), 393-411, 2019. Article (CrossRef Link).

[19] Marchal L, Simon B, Sinnen O, et al., “Malleable Task-Graph Scheduling with a Practical
Speed-Up Model,” IEEE Transactions on Parallel & Distributed Systems, 29(6), 1357-1370, 2018.
Article (CrossRef Link)

[20] Saifullah A, Ferry D, Li J, et al., “Parallel Real-Time Scheduling of DAGs,” IEEE Transactions on
Parallel & Distributed Systems, 25(12), 3242-3252, 2014. Article (CrossRef Link).

[21] Li K, “Non-clairvoyant scheduling of independent parallel tasks on single and multiple multicore
processors,” Journal of Parallel & Distributed Computing, 2018. Article (CrossRef Link).

[22] Pathan R M, Voudouris P, Stenstrom P, “Scheduling Parallel Real-Time Recurrent Tasks on
Multicore Platforms,” IEEE Transactions on Parallel & Distributed Systems, 29(4), 915-928,
2018. Article (CrossRef Link).

[23] Wang Q, Hou R, Hao Y, et al., “A parallel tasks Scheduling heuristic in the Cloud with multiple
attributes,” Ksii Transactions on Internet & Information Systems, 12(1), 287-307, 2018.
Article (CrossRef Link).

[24] Chwa H S, Lee J, Lee J, et al., “Global EDF Schedulability Analysis for Parallel Tasks on
Multi-Core Platforms,” IEEE Transactions on Parallel & Distributed Systems, 28(5), 1331-1345,
2017. Article (CrossRef Link).

[25] Hao Y, Xia M, Wen N, et al., “Parallel task scheduling under multi-Clouds,” Ksii Transactions on
Internet & Information Systems, 11(1), 39-60, 2017. Article (CrossRef Link).

[26] M. Beji, S. Achour, “Resizing of Heterogeneous Platforms and the Optimization of Parallel
Applications,” in Proc. of 2018 26th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP), Cambridge, United Kingdom, 154-161, 2018.
Article (CrossRef Link).

[27] Kayaaslan E, Lambert T, Marchal L, et al., “Scheduling series-parallel task graphs to minimize
peak memory,” Theoretical Computer Science, 707, 1-23, 2018. Article (CrossRef Link).

[28] Mahmood B, Ahmad N, Malik S U R, et al., “Power-efficient Scheduling of Parallel Real-time
Tasks on Performance Asymmetric Multicore Processors,” Sustainable Computing Informatics &
Systems, 17, 81-95, 2018. Article (CrossRef Link).

[29] Sheikh H F, Ahmad I, Fan D, “An Evolutionary Technique for Performance-Energy-Temperature
Optimized Scheduling of Parallel Tasks on Multi-Core Processors,” IEEE Transactions on
Parallel & Distributed Systems, 27(3), 668-681, 2016. Article (CrossRef Link).

https://doi.org/10.1109/LCA.2015.2512982
https://doi.org/10.1016/j.future.2016.01.013
https://doi.org/10.1109/RTSS.2011.27
https://doi.org/10.1109/ICPP.2010.16
https://doi.org/10.1016/j.jnca.2016.12.032
https://doi.org/10.1007/978-3-642-32820-6_18
https://doi.org/10.1016/j.eswa.2010.11.073
https://doi.org/10.1109/TSC.2014.2367525
https://doi.org/10.1007/s10951-018-0576-y
https://doi.org/10.1109/TPDS.2018.2793886
https://doi.org/10.1109/tpds.2013.2297919
https://doi.org/10.1016/j.jpdc.2018.06.001
https://doi.org/10.1109/TPDS.2017.2777449
https://doi.org/10.3837/tiis.2018.01.014
https://doi.org/10.1109/TPDS.2016.2614669
https://doi.org/10.3837/tiis.2017.01.003
https://doi.org/10.1109/PDP2018.2018.00029
https://doi.org/10.1016/j.tcs.2017.09.037
https://doi.org/10.1016/j.suscom.2017.10.012
https://doi.org/10.1109/TPDS.2015.2421352

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, Sepember 2019 4371

[30] Shojafar M, Cordeschi N, Baccarelli E, “Energy-efficient Adaptive Resource Management for
Real-time Vehicular Cloud Services,” IEEE Transactions on Cloud Computing, 7(1), 196-209,
2019. Article (CrossRef Link).

Jianmin Li received the M.S. degree in Computer Science Department from Xiamen
University in 2009 and the Ph.D degree in Department of Automation of Xiamen University
in 2015. He is currently a faculty of School of Computer and Information Engineering from
Xiamen University of Technology. His research interests include computer vision, machine
learning and pattern recognition.

https://doi.org/10.1109/TCC.2016.2551747

