
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, Sep. 2019                                        4349 
Copyright ⓒ 2019 KSII 

Resource management for moldable 
parallel tasks supporting slot time in the 

Cloud 
 

Jianmin Li1* 
1 School of Computer and Information Engineering, Xiamen University of Technology,  

Xiamen, 361024, China 
[e-mail: lijianmin2006@sina.cn] 

*Corresponding author: Jianmin Li 
 

Received Novmeber 21, 2018; revised January 31, 2019; revised February 23, 2019; accepted February 14, 2019; 
published September 30, 2019 

 

 

Abstract 
 

Moldable parallel tasks are widely used in different areas, such as weather forecast, 
biocomputing, mechanical calculation, and so on. Considering the deadline and the speedup, 
scheduling moldable parallel tasks becomes a difficulty. Past work majorly focuses on the LA 
(List Algorithms) or OMA (Optimizing the Middle Algorithms). Different from prior work, 
our work normalizes execution time and makes all tasks have the same scope in normalized 
execution time: [0,1], and then according to the normalized execution time, a method is used to 
search for the reference execution time without considering the deadline of tasks. According to 
the reference execution time, we get an initial scheduling result based on AFCFS (Adaptive 
First Comes First Served) policy. Finally, a heuristic approach is used to improve the 
performance of the initial scheduling result. We call our method HSRET (a Heuristic 
Scheduling method based on Reference Execution Time). Comparisons to other methods 
show that HSRET has good performance in AWT (Average Waiting Time), AET (Average 
Execution Time), and PUT (Percentages of Unfinished Tasks). 
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1. Introduction 

With the development of Cloud computing, parallel tasks have widely used in different 
areas [1]. The moldable parallel task is one of the most important parallel tasks which makes 
the user not give attention to the DAG (Directed Acyclic Graph) of the program. The user just 
gives some parameters to the program, and gets the result in a short amount of time [2]. The 
moldable parallel task model [2] has widely been used in diverse areas, such as cognitive 
computing technology [4], weather forecast [5,6], mobile computing, biocomputing, 
mechanical calculation, and so on [7]. 

The problem of scheduling of moldable parallel tasks needs to take multiple aspects into 
consideration, such as the deadline of parallel tasks [8], system load, the speedup of tasks, 
network [9], dependency of different parallel tasks [7, 9], and so on [7, 8, 9]. Sometimes, those 
aspects are conflicting with each other. For example, if a parallel task has a higher value in the 
parallelism (giving more resources to the parallel task), it shortens the execution time; but at 
the same time (according to Amdahl's law [10]), it consumes more resources and makes other 
tasks have to reduce the resources. Sometimes, that would make other tasks not be finished 
before their deadlines. Furthermore, the non-linear relation between the parallelism and the 
execution time makes the scheduling problem more difficult than other environments [5]. 

Researchers have done much work for the scheduling of parallel tasks in different 
environments, such as Grid, cluster [11], multi-core system [12], and cloud environment [8]. 
The scheduling targets include minimizing the makespan (or execution time) [13], reducing 
the cost [14], saving the energy consumption [15] and so on. Those scheduling methods 
include approximation algorithm [3, 7], agent-based algorithm [16], iterative approach and 
other methods. Recently, Map-Reduce [17] is also used to schedule moldable parallel tasks. 

That work either supposes that the task has a forecast speedup under different parallelisms 
[19], or supposes that we know the details of the DAG of the parallel task. However, it is very 
difficult to get an accurate forecast of the speedup under different parallelisms [20]. Even we 
know the detail of the DAG, how to schedule it is also a very challenging problem. Those two 
aspects bring a negative effect on those scheduling methods and make the scheduling method 
more difficult. 

Different from past work, we do not take account of the DAG of the program, which is very 
difficult to control for the scheduler. We just take account of the speedup of the parallel tasks 
and the system load of the system. Based on the system load and the speedup with different 
numbers of resources, we propose our scheduling method. 

Main contributions of our paper focus on: 
(1) we give a system model for moldable parallel tasks, which support slot time, speedup and 

so on; 
(2) we try to normalize the execution time of different parallel tasks to make them have a same 

scope of [0,1]; 
(3) we propose a scheduling for the moldable parallel tasks; 
(4) we compare our method with other methods in different environments, especially when 

the system has an inaccurate value in the speedup. 
The framework of our paper is introduced as follows. Section 2 gives a literature review of 

the scheduling methods for parallel tasks, especially for moldable parallel tasks. Section 3 

https://xueshu.baidu.com/s?wd=paperuri%3A(7df954bda19e44173409a35f7877c011)&filter=sc_long_sign&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_ks_para=q%3DMoldable%20parallel%20job%20scheduling%20using%20job%20efficiency%3A%20an%20iterative%20approach
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provides an example for moldable parallel tasks-a program for weather forecast. Section 4 
addresses our proposed system architecture and the related model, and at the same time, it also 
gives a deep analysis to the system. Section 5 gives a scheduling method for the scheduling of 
moldable parallel tasks. Section 6 describes the simulation performance of our proposed 
methods and existing methods. We concluded our study and further work in Section 7. 

2. Related Work 
D. G. Feitelson et al., “[2] referred to tasks with a fixed number of processors (parallelism) as 
rigid tasks, tasks that can be resized only at launch time as moldable parallel tasks, and tasks 
that can grow or shrink at runtime as the malleable task. In other words, jobs with a fixed 
parallelism, if the parallelism is set at the beginning and never can be changed during the 
execution, the task belongs to moldable tasks; if the parallelism can be changed at any time, 
the task belongs to malleable parallel task. 

For the scheduling of parallel tasks, most methods are proposed by smartly selecting the 
route and time of the sub-tasks in the DAG of those parallel tasks. Those methods always try to 
shorten the execution time. D. Sánchez et al., “[16] proposed an agent-based architecture to 
manage and execute independent parallel tasks on a dynamic network. They introduced an 
application on their proposed architecture to support the execution of a complex knowledge 
acquisition task by an adequate load balancing policy. W. YiRong et al., “[11] divided the 
entire scheduling process of scheduling MOWS (Mixed-parallel Online Workflow Scheduling) 
into four phases: task prioritizing, waiting queue scheduling, task rearrangement, and task 
allocation. They developed four new methods: shortest-workflow-first, priority-based 
backfilling, preemptive task execution and All-EFT (ALL Early Finished Task First) task 
allocation, for scheduling NOWS tasks in speed-heterogeneous multi-cluster environments. L. 
Keqin [21] investigated the problem of non-clairvoyant scheduling of independent parallel 
tasks on single and multiple multicore processors. For a single multicore processor, they used 
LTF (Largest Task First) to get the asymptotic worst-case performance bound for a 
non-clairvoyant offline scheduling algorithm. For multiple multicore processors, he used RTF 
(Random Task First) for a non-clairvoyant online scheduling problem. R. M. Pathan et al., 
“[22] proposed a two-level GFP (preemptive Global Fixed-priority scheduling Policy) for the 
scheduling of a real-time parallel application that is modeled as a collection of parallel and 
recurrent tasks on a multicore platform: a task-level scheduler first determines the 
highest-priority ready task and a subtask-level scheduler selects its highest-priority subtask for 
execution. Q. Wang et al., “[23] proposed a new parallel job scheduling method based on a 
classification method of resources from different attributes (including the memory, bandwidth, 
CPU)-CPLMT (Cloud Parallel scheduling based on the Lists of Multiple Attributes). The 
classification method categorized resources into different kinds according to the number of 
resources that satisfied the job from different attributes of the resource, such as the speed of the 
resource, memory and so on. Most interference-based analysis techniques are not directly 
applicable to parallel programming model, so, H. S. Chwa et al., “[24] extended the notion of 
interference to capture thread-level parallelism more accurately. They leveraged 
parallelism-aware interference to derive efficient EDF (Earliest Deadline First) schedulability 
tests that are directly applicable to parallel task models, including DAG models on multi-core 
platforms. Those methods always target to shorten the execution time by smartly selecting the 
execution route of DAG of the parallel tasks. 
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Some scheduling methods not only try to shorten the execution time, but also try to 
improve performance of other aspects, such as reducing peak memory [27], the energy 
consumption [28, 29, 30] and so on. K. Enver et al., “tried to reduce the peak memory in a 
parallel execution environment. They modeled the tasks as a DAG and targeted to find a 
topological ordering which has the maximum number of cut edges at any point. The vertices 
and edges have weights, and the aim is to minimize the maximum weight of cut edges in 
addition to the weight of the last vertex before the cut. B. Mahmood et al., “[28] addressed the 
real-time scheduling problem of parallel tasks on a performance asymmetric multicore 
processor with multiple cores targeting to reduce the power consumption. Based on DVFS 
(Dynamic Voltage and Frequency Scaling) technology, they used parallel EDF - first divides 
the tasks into m segments and then executes these distributed tasks in EDF fashion. H. F. 
Sheikh et al., “[29] proposed MOEA (a Multi-Objective Evolutionary Algorithm), which tries 
to determine Pareto optimal solutions with simultaneous optimization of performance (P), 
energy (E), and temperature (T). Their work included problem-specific solution encoding, 
determining the initial population of the solution space, and the genetic operators that get 
efficient solutions in a short amount of time. They presented a methodology to select one 
solution from the Pareto front according to the user's preference. M. Shojafar et al., “[30] 
proposed an energy-efficient adaptive resource scheduler for NetFCs (Networked Fog 
Centers). It is operated at the edge of the vehicular network and are connected to the served 
VCs (Vehicular Clients) through I2V (Infrastructure-to-Vehicular) TCP/IP-based single-hop 
mobile links. Taking account of the locally measured states of the TCP/IP connections, they 
try to maximize the overall communication-plus-computing energy efficiency, and meet the 
application-induced hard QoS (Quality of Service) requirements on the minimum 
transmission rates, maximum delays and delay-jitters. Those methods always try to consider 
multiple targets of scheduling, and based on the multiple targets, they propose different 
methods from different aspects. Other methods also try to consider the speedup of parallel 
tasks and ignore the DAG (Directed Acyclic Graph) of the parallel tasks. They always 
improve the performance by smartly selecting the speedup of parallel tasks. Hao et al., “[25] 
considered the scheduling of parallel tasks in multi-Cloud environment. They categorized jobs 
into different lists according to the waiting time of the jobs and every job has different 
parallelisms. At the same time, a new method-ZOMT (the scheduling parallel tasks based on 
ZERO-ONE scheduling with Multiple Targets) is proposed to solve the problem of scheduling 
parallel jobs. M. Beji et al., “[26] tried to schedule parallel application by resizing the 
application and finding the appropriate sub-platform with the optimal number of resources 
(clusters, processors) from the original platform. There are three steps in the scheduling: firstly, 
determining of the computing clusters; secondly, determining the optimal number of 
processors in each cluster; finally placing the tasks on the appropriate processors. Though 
those methods take account of the speedup, all of them always neglect the speedup which is 
not accurate in the scheduling. Most important of all, our moldable parallel tasks support slot 
time, which brings users much convenience, such as checking the error points, getting the 
phrase result, and so on. 

3. An example for moldable parallel task model  
In this section, we will give an example for the moldable parallel task, and then, we give the 
model of the moldable parallel task. 
 

javascript:;
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3.1 Moldable parallel task model 
We model the moldable parallel task 𝑡𝑖 (1 ≤ 𝑖 ≤ 𝐼) as: 

𝑡𝑖 = {𝑎𝑟𝑖 ,𝑑𝑙𝑖 , < 𝑝𝑙𝑖
𝑗, 𝑒𝑡𝑖

𝑗, 𝑠𝑝𝑖
𝑗 >,𝑚𝑖𝑛𝑝𝑖 ,𝑚𝑎𝑥𝑝𝑖} (𝑚𝑖𝑛𝑝𝑖 ≤ 𝑗 ≤ 𝑚𝑎𝑥𝑝𝑖)            (1) 

𝑎𝑟𝑖 is the arrival time, 𝑑𝑙𝑖 is the deadline. 𝑝𝑙𝑖
𝑗 and 𝑒𝑡𝑖

𝑗 is the jth parallelism and the related 
execution time (𝑝𝑙𝑖

𝑗 < 𝑝𝑙𝑖
𝑗+1). 𝑠𝑝𝑖

𝑗  is the speedup when the parallelism of the task is 𝑝𝑙𝑖
𝑗 . 

𝑚𝑖𝑛𝑝𝑖 and 𝑚𝑎𝑥𝑝𝑖 is the minimum parallelism and the maximum parallelism of the task. 𝐼 is 
the total number of tasks. In formula (1), the execution time 𝑒𝑡𝑖

𝑗 is the time executed on a SR 
(standard resource). 

3.2 Moldable parallel task supporting slot time model 
The moldable parallel task always needs much time to execute them, and sometimes, there are 
some errors from the task or the computing resources, the task may be broken in the execution. 
So, slot time is used to support moldable parallel tasks. Slot time not only helps us to check the 
error that happens in the execution, but also offers us an easy way to schedule those tasks. 
During the slot time, the task holds the allocated resources exclusively, until the end of every 
slot time. At the end of the slot time, the task can give up the execution right even if it is not 
finished. 

Fig. 1 gives an example of the scheduling moldable tasks. The rectangle with small squares 
is the sub-task that has been finished. The black rectangle is the sub-task that has not been 
scheduled. There are four resources and the task comes first, which is paralleled by 4*3 small 
tasks. The execution time of every task is a SL (Slot Time). In the first slot, the task a comes 
and gets 4*1 slots time. Then the task b comes, which has a short time to the deadline, so, it has 
to be executed with the parallelism of 3. After that, in the time for the two slots time to come, 
the rest of tasks of a (𝑎𝑖,𝑗 , 𝑖 = 2,3) are executed. 
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Fig. 1. An example for moldable parallel tasks 

3.3 A motive example for scheduling of moldable parallel task supporting slot 
time model 
In this section, we will give an example to schedule 4 tasks (a, b, c, d) on five resources 
(𝑅1~𝑅5). Suppose that all those tasks arrive at the beginning. Table 1 gives attributes of those 
four tasks (the deadline and the arrival time denoted by the number of slot times),  
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Table 1. An example of scheduling of moldable parallel tasks 
Task deadline Arrival time <parallelism, execution time> Available selection  
a 5 0 <1,4> <2,3> <3,3> <1,4> <2,3> <3,3> 
b 7 0 <1,8><2,5><3,4> <2,5><3,4> 
c 6 0 <1,7><2,4><3,3> <2,4><3,3> 
d 2 3 <1,5><2,3><4,2> <4,2> 
 

The tasks a, b and c arrive at the beginning time, and the task d arrives at the 3th slot time 
(Fig. 2). Just considering the deadline, the job can select the parallelism in column 5 of Table 
1. To reduce the consumed resources, we select the parallelism with the smallest parallelism 
that meets the requirement. So, the parallelisms of a, b and c are 1 (a1,1~a1,4), 2 (b1,1~b2,5) and 2 
(c1,1~c2,4) , respectively. When the task d comes, it can only be paralleled as the parallelism is 4 
to meet the deadline. So, the sub-tasks of b (b1,4, b2,4, b1,5, b2,5) and c (c1,4, c2,4) are suspended. 
After the execution of d, the sub-tasks of b and c are beginning to be executed again. 

In fact, we can also schedule tasks with other kinds of scheduling policies: task with 
different parallelisms and different orders. To the best of our knowledge, only our method can 
ensure the four tasks are finished before their deadlines. But, we also find that we always make 
the task consume the lowest resources, and if the system is under a low load, it may increase 
the execution time.  

From the above-mentioned example, we find in the scheduling of moldable parallel tasks: 
(1) the parallelism of the moldable parallel task cannot be changed in the execution; 
(2) the sub-tasks of a task can be suspended during the execution (at the end of every slot 

time); 
(3) the selection of parallelisms is decided by the system load; 
(4) the scheduling order of the sub-tasks of a task can be changed during execution. 

So, there are two main steps in the scheduling of malleable parallel tasks: (1) assigning the 
parallelism, and (2) deciding the scheduling order of sub-tasks. 
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Fig. 2. Scheduling moldable parallel tasks supporting slot time 

4. An analysis to the system 
In this section, first, we will present the system framework, and then, we will give the method 
to decide the parallelism and the related scheduling order of every sub-task of scheduled 
moldable parallel tasks. 
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4.1 System framework 
Our study takes a simulation model to address performance issues associated with the task that 
can be parallelized by different numbers of sub-tasks with different execution time. Fig. 3 
gives the module that is more related to our scheduling of moldable parallel tasks. There are 
four phases for the scheduling of parallel tasks [26]: submission (Phase 1), mapping or 
task-to-node allocation (Phase 2), parallelism decision (Phase 3), and sub-task scheduling 
(Phase 4). Submission is the interface for users to submit their tasks. The users submit the task 
and the related information of the task, such as the deadline, the speedup under different 
parallelisms and so on. According to the system load of every cluster, mapping (or 
task-to-node allocation) decides to allocate the coming tasks to which clusters. Parallelism 
decision decides the number of assigned resources according to the system load, the deadline 
of jobs, and other requirements. The third phase decides the parallelism which ensures that the 
system meets the global load: (1) to maximize the number of finished tasks (2) to minimize the 
average execution time. Phase 4 decides the scheduling of sub-tasks. Because we can not 
forecast the system load with no errors, sometimes, we do not schedule those tasks as FCFS 
(First Come First Service) policy. We may give some sub-tasks higher priorities of being 
executed. The main models include: Accounting, SLM (System Load Monitoring), PDS 
(Parallelism Decision Scheduler), STS (Sub-tasks Scheduler), LS (Local Scheduling of 
sub-tasks). 
 

Cluster 1

CPU 1

CPU ...

CPU 2

LS 1

LS 3

STSPDSSLMAccounting λ

USER

USER

Cluster 2

CPU 1

CPU ...

CPU 2LS 2

Cluster 3

CPU 1

CPU ...

CPU 2

 
Fig. 3. Scheduling framework of moldable parallel tasks  

Accounting: a user submits a moldable parallel task to the system through the Accounting 
tool. The user not only submits the code and the related data of the job, but also submits the 
relation between the parallelism and the execution time of the task. Accounting also holds the 
responsibilities such as ensuring every task is a secure task, recording the behavior of users, 
and so on. In summary, Accounting gives the interface for users to submit their tasks and the 
related information to tasks to the system. 

SLM: SLM forecasts the system load information according to load information of all 
clusters. LS (Local Scheduler 1~3) reports the system load to SLM and SLM forecasts the 
system load according to the report from LS. SLM decides whether permits the new coming 
task to enter the system according to the forecast of the system load. 

PDS: according to the forecast system load, PDS decides the number of assigned resources. 
PDS decides the parallelism of the task according to: (1) the system load, with the system load 
increasing, the number of resources drops; (2) the relation between the execution time and the 
parallelism, which is decided by the task. PDS gives the parallelism to those tasks and the 
parallelism can not be chanage during the execution. 
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STS: according to the load information from different clusters, such as LS 1 and LS 2, STS 
decides to assign the parallel sub-tasks to which clusters. STS also considers the system load 
and the deadline, and decides the scheduling order of all parallel sub-tasks. Sometimes, the 
scheduling order of the parallel sub-tasks may not be FCFS. Some sub-tasks can be brought 
forward because other sub-tasks have deadlines close to the deadline. 

Under the model, the four phrases (submission, deciding parallelism, task-to-cluster 
allocation, sub-task scheduling) work together to schedule resources. At first, we estimate the 
system load according to the system load of different clusters (submission), and then 
according to the speedup of parallel tasks and other requirements (deadline) to the tasks, 
decide the number of assigned resources (deciding parallelism). The speedup of the parallel 
task gives the relation between the number of assigned resources and the execution time. After 
we get the speedup of different tasks, we decide to assign how many resources to tasks 
(task-to-cluster allocation) and schedule sub-tasks accordingly (sub-task scheduling). LS is in 
charge of the local resources and ensures the task can be finished before its deadline even we 
can not get an accurate speedup. LS is in charge of the resource virtualization, including the 
role for VM consolidation, resource allocations and monitoring of the request scattered in 
various data centers. If  the system load is very low, and it can shut down some VMs to 
enhance the resource utility. On the contrary, if it finds the system has a higher system load, it 
may use the DVFS [29] technology to make the CPU work with a higher speedup. 

From the system model, we know that there are two main problems in the scheduling: how 
to decide the parallelism and how to schedule those sub-tasks of all parallel tasks. 

4.2 An analysis of the system 
As we know that, the parallelism is decided by the system load. If the system has a low system 
load, we can give the task more resources to shorten the execution time; on the contrary, if the 
system has a high load, we can just assign the resources to ensure the task can be finished 
before its deadline. We call the parallelism reference parallelism which makes every task have 
the same normalized execution time, and every task has the minimum execution time without 
considering the deadline and other requirements. 

The problem is the system load is dynamic especially for moldable parallel tasks. There are 
two kinds of system loads: maximum system load (maxsl) and minimum system load (minsl). 
maxsl and minsl are the system loads when all tasks have the maximum parallelism (𝑚𝑖𝑛𝑝𝑖 in 
formula (1)) or minimum parallelism (𝑚𝑎𝑥𝑝𝑖 in formula (2)).We calculate the system load 
under the two assumptions: (1) the task has no deadline; (2) the system load is average 
allocated to the time from the task arrival to the deadline. We suppose that there are TN tasks 
which arrive before the slot time now and have a deadline more than now.  

𝐽𝑠𝑒𝑡 = {𝐽𝑎𝑖𝑑|𝑇𝑁 ≥ 𝑎𝑖𝑑 ≥ 1}                                                 (2) 

The processing ability of the system is TP (which is denoted by the number of standard 
computing resources). Consumed resources that when the system has the maximum 
parallelism (𝑐𝑟𝑚𝑎𝑥) and minimum parallelism (crmin) are: 

𝑐𝑟𝑚𝑎𝑥 = ∑ 𝑝𝑙𝑖
𝑗𝑚𝑎𝑥∗𝑒𝑡𝑖

𝑗𝑚𝑎𝑥

(𝑑𝑙𝑖−𝑎𝑟𝑖)∗𝑇𝑃
𝑇𝑁
1                                                 (3) 

𝑐𝑟𝑚𝑖𝑛 = ∑ 𝑝𝑙𝑖
𝑗𝑚𝑖𝑛∗𝑒𝑡𝑖

𝑗𝑚𝑖𝑛

(𝑑𝑙𝑖−𝑎𝑟𝑖)∗𝑇𝑃
𝑇𝑁
1                                                  (4) 

javascript:;
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Where, 𝑗𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑝𝑖 and 𝑗𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑝𝑖. 
So: 

𝑚𝑖𝑛𝑠𝑙 = 𝑚𝑖𝑛 (𝑐𝑟𝑚𝑖𝑛 𝑇𝑃⁄ , 1)                                             (5) 

𝑚𝑎𝑥𝑠𝑙 = 𝑚𝑎𝑥 (𝑐𝑟𝑚𝑎𝑥 𝑇𝑃⁄ , 1)                                           (6) 

In formulas (5) and (6), the functions max and min return the maximum and the minimum. 
There are three cases in the scheduling: 
Case 1: 𝑚𝑎𝑥𝑠𝑙 = 1. In this case, we can allocate as many resources as possible to the task. 

In other words, the task can be executed with the maximum parallelism. 
Case 2: 𝑚𝑖𝑛𝑠𝑙 = 1. In this case, even every task is executed under minimum parallelism, 

there are some tasks that cannot be finished as request. 
Case 3: 𝑚𝑖𝑛𝑠𝑙 ≤ 𝑚𝑎𝑥𝑠𝑙 ≤ 1. In this case, we need to decide the parallelism of different 

tasks. 
In case 1, we have no problem in the scheduling; and in Case 3, we have no methods to 

meet the scheduling requirement. So, our research focuses on Case 2. First, we need to 
normalize the execution time of parallel tasks to make them have a scope of [0, 1]. According 
to formula (1), we set the normalized execution time 𝑒𝑡𝑖

𝑗 of the task 𝑡𝑖 as 𝑛𝑒𝑡𝑖
𝑗: 

𝑛𝑒𝑡𝑖
𝑗 = (𝑒𝑡𝑖

𝑗 − 𝑚𝑖𝑛 (𝑒𝑡𝑖∗)) (𝑚𝑎𝑥 (𝑒𝑡𝑖∗)� −𝑚𝑖𝑛 (𝑒𝑡𝑖∗))                   (7) 

𝑒𝑡𝑖∗ is the set of execution time under different parallelisms for the task 𝑡𝑖. 𝑚𝑎𝑥 (𝑒𝑡𝑖∗) and 
𝑚𝑖𝑛 (𝑒𝑡𝑖∗) are the maximum and minimum execution time. 

 

 
Fig. 4. Execution time of WRF under different parallelisms 

 
Fig. 5. Execution time of GRAPES under different parallelisms 
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Fig. 4 and Fig. 5 give the execution time of WRF (Weather Research and Forecasting 
model) and GRAPES (Global/Regional Assimilation and Prediction Enhanced System) under 
different parallelisms (the two models are executed on the same configuration). WRF and 
GRAPES are widely used in the weather forecast. We can find that: (1) the execution time has 
changed with different scopes; (2) the execution time has different trends; (2) GRAPES and 
WRF have different scope of parallelism. Those differences make how to decide parallelism  a 
difficulty. So, to ensure the execution time has the same scope, formula (7) is used to 
normalize the execution time. Fig. 6 and Fig. 7 are the normalized execution time of GRAPES 
and WRF. We find that the normalized data has the same trend with the original data. 
 

 
Fig. 6. Normalized execution time of WRF under different parallelisms 

 
Fig. 7. Normalized execution time of GRAPES under different parallelisms 

5. Scheduling method for mold parallel tasks 

5.1 Resource scheduling for moldable parallel tasks to decide normalized 
execution time 
We know that, the system load and the deadline of tasks play an important role to decide the 
parallelism. First, we need to get the available parallelism that ensures the task can be finished 
before its deadline. For the task 𝑡𝑖, suppose that the scope of available parallelisms is [𝑎𝑣𝑖𝑝𝑖, 
𝑚𝑎𝑥𝑝𝑖] (𝑎𝑣𝑖𝑝𝑖 ≥ 𝑚𝑖𝑛𝑝𝑖). Using formula (7), the available parallelism can be denoted as 
[𝑛𝑎𝑣𝑖𝑝𝑖 , 1]. When the task 𝑡𝑖  is executed under the state < 𝑝𝑙𝑖

𝑗𝑠𝑒𝑙 , 𝑒𝑡𝑖
𝑗𝑠𝑒𝑙 , 𝑠𝑝𝑖

𝑗𝑠𝑒𝑙 > (the 
parallelism 𝑝𝑙𝑖

𝑗𝑠𝑒𝑙, the execution time 𝑒𝑡𝑖
𝑗𝑠𝑒𝑙, and the speedup 𝑠𝑝𝑖

𝑗𝑠𝑒𝑙), the task average adds 
the load to every slot of the system and it is denoted by 𝑙𝑑𝑖

𝑗𝑠𝑒𝑙: 
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 𝑙𝑑𝑖
𝑗𝑠𝑒𝑙 =

𝑝𝑙𝑖
𝑗𝑠𝑒𝑙∗𝑒𝑡𝑖

𝑗𝑠𝑒𝑙

(𝑑𝑙𝑖−𝑎𝑟𝑖)∗𝑇
                                                            (8) 

𝑇 is the computing ability of all resources of every slot. We suppose that every task has the 
same normalized execution time, denoted by 𝑎𝑣𝑔𝑝𝑙. Algorithm 1 gives the method to get the 
normalized execution time: 

 
Algorithm 1: Getnet(𝑇, I, Nslot) // gets the normalized execution time, 𝑇 is the total processing ability 

of all resources, I is the number of tasks, Nslot is the total number of slots in the scheduling; 

1: 𝑠𝑛𝑒𝑡 = 1; // suppose the selected normalized execution time is 1 

2: 𝑏𝑒𝑔𝑒𝑡 = 0, 𝑒𝑛𝑑𝑒𝑡 = 1; // change the normalized parallelism from 0 to 1 without taking account of 

the deadline; 

3: 𝑚𝑖𝑛𝑠𝑡𝑒𝑝 = 1
maxet(𝑚𝑖𝑛𝑝𝑖)−minet (𝑚𝑎𝑥𝑝𝑖)

; // get the minstep; 

4: 𝑒𝑔𝑒𝑡 = 0; 

5: While (𝑒𝑛𝑑𝑒𝑡 − 𝑏𝑒𝑔𝑒𝑡)> 𝑚𝑖𝑛𝑠𝑡𝑒𝑝 do 

6:       For 𝑖 = 1: 𝐼 do 

7:        According to the normalized execution time to get the execution time; 

8:       According to the execution time to get the execution state of different tasks; 

9:          Suppose 𝑡𝑖 average adds load to every slot according to formula (8);  

//suppose the normalized execution time is 𝑠𝑛𝑒𝑡; 

10:       Get the minimum load minl of every slot; 

11:       If minl>1 then 

12:           𝑒𝑛𝑑𝑒𝑡 = (𝑒𝑛𝑑𝑒𝑡 + 𝑏𝑒𝑔𝑒𝑡)/2;  

13:       Else  

14:           𝑏𝑒𝑔𝑒𝑡 = (𝑒𝑛𝑑𝑒𝑡 + 𝑏𝑒𝑔𝑒𝑡)/2; 

15:       𝑠𝑛𝑒𝑡 = (𝑒𝑛𝑑𝑝𝑙 + 𝑏𝑒𝑔𝑝𝑙)/2; 

16: Get the execution state of different tasks when the normalized execution time is 𝑠𝑛𝑒𝑡. 

 
The main idea of Algorithm 1 is using binary search to find the best normalized execution 

time, which is the maximum parallelism which ensures that every slot is not overloaded (less 
than 1). Line 1 supposes that the normalized execution is 1. Line 2 supposes that the available 
normalized execution has the range of [0,1]. 𝑏𝑒𝑔𝑒𝑡 and 𝑒𝑛𝑑𝑒𝑡 are lower bound and upper 
bound of execution time. Line 3 gets the minimum step (𝑚𝑖𝑛𝑠𝑡𝑒𝑝). maxet(𝑚𝑖𝑛𝑝𝑖) returns to 
the maximum execution time when every task has the lowest parallelism. minet(𝑚𝑎𝑥𝑝𝑖) 
returns to the minimum execution time when every task has the highest parallelism. Lines 5-14 
get the parallelism until the range is less than the minimum step 𝑚𝑖𝑛𝑠𝑡𝑒𝑝. Lines 6-9 calculate 
the load of every slot when the normalized execution is 𝑠𝑛𝑒𝑡. First, we get the execution time 
according to the normalized execution time (line 7), then we get the execution state of different 
tasks (line 8), and lastly, the task average adds load to every slot. Line 10 gets the minimum 

v 
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load of every slot (minl). Lines 11~14 check whether the load minl is more than 1. If it is, the 
upper bound 𝑒𝑛𝑑𝑒𝑡  becomes (𝑒𝑛𝑑𝑒𝑡 + 𝑏𝑒𝑔𝑒𝑡)/2  (line 13); otherwise, the lower bound 
𝑒𝑛𝑑𝑒𝑡  becomes (𝑒𝑛𝑑𝑒𝑡 + 𝑏𝑒𝑔𝑒𝑡)/2  (line 15). Line 16 returns to the execution state of 
different tasks. 

5.2 Resource scheduling for moldable parallel tasks to decide execution time 
considering deadlines 
 
Algorithm 2: Selet(I, 𝑠𝑛𝑒𝑡)  // I is the number of tasks, 𝑠𝑛𝑒𝑡 is the selected normalized execution time. 

1: Get unscheduled tasks (𝑢𝑛𝑡) when all tasks are executed under normalized execution time 𝑠𝑛𝑒𝑡 

under AFCFS policy; 

2: Sort tasks in 𝑢𝑛𝑡 as the ascending order of the arrival time; 

3: For every task 𝑡𝑖 in 𝑢𝑛𝑡 do 

4:     Get tasks which arrive before 𝑡𝑖 and have the deadline that is less than the deadline of 𝑡𝑖,   

    denoted by 𝑙𝑓𝑡𝑖; 

5:     Sch1(𝑙𝑓𝑡𝑖, 𝑡𝑖); 

6:     If  Checksch(𝑡𝑖)  then  

7:        Schedule 𝑡𝑖; 

8:     Else 

9:         Get tasks which arrive after 𝑡𝑖 and have the deadline that is less than the deadline of 𝑡𝑖,          

       denoted by 𝑚𝑖𝑑𝑡𝑖; 

10:         Sch2(𝑚𝑖𝑑𝑡𝑖, 𝑡𝑖); 

11:          If Checksch(𝑡𝑖) then 

12:             Schedule 𝑡𝑖;  

13:          Else 

14:              Get tasks which arrive after 𝑡𝑖 and have the deadline that is more than the deadline of 𝑡𝑖,  

             denoted by 𝑟𝑔𝑡𝑖; 

15:              Sch3(𝑟𝑔𝑡𝑖, 𝑡𝑖); 

16:              If Checksch(𝑡𝑖) then 

17:                   Schedule 𝑡𝑖; 

18:              Else 

19:                   drop 𝑡𝑖; 

 
 

In fact, some tasks may not be finished as our request under the selected normalized execution 
time because of the deadline. So, we should give details to find the right execution time to 
meet the deadline. Algorithm 2 is used to get the selected execution time of every task. We get 
the unscheduled tasks 𝑢𝑛𝑡 ( line 1), and then re-schedule the tasks in 𝑢𝑛𝑡. In Algorithm 2,  I is 
the number of tasks, snet is the selected normalized execution time. 
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As shown in Fig. 8 and Algorithm 2, jobs arrive before 𝐴𝑟𝑖 and have a deadline which is 
less than 𝐷𝑙𝑖, denoted by 𝑙𝑓𝑡𝑖, which would be scheduled as Sch1(𝑟𝑔𝑡𝑖) (line 5); tasks arrive 
after 𝐴𝑟𝑖  and have a deadline which is less than 𝐷𝑙𝑖 , denoted by 𝑚𝑖𝑑𝑡𝑖 , which would be 
scheduled as Sch2(𝑚𝑖𝑑𝑡𝑖) (line 10); tasks arrive after 𝐴𝑟𝑖 and have a deadline which is more 
than 𝐷𝑙𝑖, denoted by 𝑟𝑔𝑡𝑖, which would be scheduled as Sch3(𝑟𝑔𝑡𝑖) (line 15). Checksch(𝑡𝑖) 
checks whether the task 𝑡𝑖 can be scheduled before the deadline. 
 
Algorithm 3: Sch1(𝑙𝑓𝑡𝑖, 𝑡𝑖); // trying to scheduling the task 𝑡𝑖 based on reschedule 𝑙𝑓𝑡𝑖 

1: 𝑠𝑡𝑒𝑡 = 𝑠𝑛𝑒𝑡; // 𝑠𝑛𝑒𝑡 records selected normalized time 

2: 𝑠𝑎𝑣𝑟 = 0, 𝑚𝑖𝑛𝑟 = 0, 𝑛𝑠𝑡𝑒𝑡 = 𝑠𝑛𝑒𝑡; // 𝑠𝑎𝑣𝑟 records saved computing resources, 𝑚𝑖𝑛𝑟 records 

the minimum 𝑠𝑎𝑣𝑟 under different normalized execution time; 

3: While 𝑡𝑖 cannot be allocated  do 

4:     For every task 𝑡𝑒𝑚𝑝 ∈ 𝑙𝑓𝑡𝑖 do 

5:        If 𝑡𝑒𝑚𝑝 can be allocated before 𝐴𝑟𝑖 when the normalized execution time is 𝑛𝑠𝑡𝑒𝑡, then 

6:           Calculate the saving computing resources 𝑛𝑠𝑎𝑣𝑟 for the task 𝑡𝑖; 

7:           𝑠𝑎𝑣𝑟 = 𝑠𝑎𝑣𝑟 + 𝑛𝑠𝑎𝑣𝑟; 

8:        Else // for tasks that cannot be finished before 𝐴𝑟𝑖 

9:          𝑡𝑒𝑚𝑝1 = 𝑠𝑛𝑒𝑡, 𝑡𝑒𝑚𝑝2 = 𝑠𝑛𝑒𝑡; 

10:          While 𝑡𝑒𝑚𝑝1 > 𝑚𝑖𝑛𝑠𝑡𝑒𝑝 do 

11:             𝑡𝑒𝑚𝑝1=𝑡𝑒𝑚𝑝1−𝑚𝑖𝑛𝑠𝑡𝑒𝑝; 

12:             Get the minimum saving resource for reducing normalized execution time (𝑠𝑎1); 

13:          While 𝑡𝑒𝑚𝑝2 < 1 do 

14:             𝑡𝑒𝑚𝑝2=𝑡𝑒𝑚𝑝2−𝑚𝑖𝑛𝑠𝑡𝑒𝑝; 

15:             Get the minimum saving resource for reducing normalized execution time (𝑠𝑎2); 

16:          Comparing 𝑠𝑎1 and 𝑠𝑎2, and selecting the bigger (as 𝑠𝑎); 

17:     If (𝑠𝑎𝑣𝑟 + 𝑠𝑎) < 𝑚𝑖𝑛𝑟 then 

18:       𝑚𝑖𝑛𝑟 = 𝑠𝑎𝑣𝑟, 𝑠𝑡𝑒𝑡 = 𝑛𝑠𝑡𝑒𝑡; 

19:    𝑠𝑡𝑒𝑡 = 𝑠𝑡𝑒𝑡 −𝑚𝑖𝑛𝑠𝑡𝑒𝑝; 

 

Sch1(lfti)

Ari Dli

Sch2(midti)

Sch3(rgti)

ti

 
Fig. 8. The scheduling methods for different kinds of tasks 
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For different kinds of jobs (𝑙𝑓𝑡𝑖, 𝑚𝑖𝑑𝑡𝑖 and 𝑟𝑔𝑡𝑖), we give different policies. 
For jobs in 𝑟𝑔𝑡𝑖, if the job can be finished before 𝐴𝑟𝑖, we always select the maximum 

execution time but ensure they can be finished before 𝐴𝑟𝑖 (lines 6~9 Algorithm 3, the same for 
the following); otherwise, two methods – enhancing (lines 15~18) or reducing (lines 11~14) 
the normalized execution time are used to check which has the minimum saving computing 
resources. Algorithm 3 gives the details. 𝑠𝑛𝑒𝑡 records selected normalized time. 𝑠𝑎𝑣𝑟 records 
saved computing resources, 𝑚𝑖𝑛𝑟  records the minimum 𝑠𝑎𝑣𝑟  under different normalized 
execution time. First of all, we suppose that the jobs are executed within the normalized 
execution time, to check whether they would meet the deadline (lines 3~5). Then, for jobs that 
can be finished before the arrival time of 𝑡𝑖 (𝐴𝑟𝑖), we reduce the normalized execution time 
with a step of 𝑚𝑖𝑛𝑠𝑡𝑒𝑝 (line 6, Algorithm 3), to calculate the saving computing resources 
(𝑛𝑠𝑎𝑣𝑟) (line 7), until it can meet the deadline. For the task that cannot be finished before 𝐴𝑟𝑖, 
enhancing (lines 10~12) and reducing normalized execution time (lines 13~15) are used to get 
the minimum saving execution time, and we select the policy which saves more computing 
resources (line 19). At last, we choose the solution which saves more computing resources. 

For jobs in 𝑚𝑖𝑑𝑡𝑖, our policy is simple, we just want to enhance the normalized execution 
time, and to reduce the system load. The reason is, non-linear speedup moldable parallel tasks 
enhance the computing requirement with the enhancement of speedup (reducing the 
normalized execution time). The algorithm for 𝑚𝑖𝑑𝑡𝑖  is simple, so, we do not give it 
(Sch2(𝑚𝑖𝑑𝑡𝑖)) in details. 

 
Algorithm 4: Sch3(𝑟𝑔𝑡𝑖) 

1: 𝑠𝑡𝑒𝑡 = 𝑠𝑛𝑒𝑡; // 𝑠𝑛𝑒𝑡 records selected normalized time 

2: 𝑚𝑖𝑛𝑟 = 0; // 𝑚𝑖𝑛𝑟 records the minimum 𝑠𝑎𝑣𝑟 under different normalized execution time; 

3: While 𝑡𝑖 cannot be allocated do 

4:    𝑠𝑎𝑣𝑟 = 0, 𝑎𝑠𝑟 = 0;// 𝑠𝑎𝑣𝑟 and 𝑎𝑠𝑎𝑣𝑟 record the saving computing resources before the            

  deadline 𝐷𝑙𝑖 and after 𝐷𝑙𝑖 

5:    While 𝑡𝑒𝑚𝑝1 < 1 do 

6:         For every task 𝑡𝑒𝑚𝑝 ∈ 𝑟𝑔𝑡𝑖 do 

7:             If 𝑡𝑒𝑚𝑝 can be finished before 𝐷𝑙𝑖 when the normalized execution time is 𝑛𝑠𝑡𝑒𝑡 then 

8:                Calculate the saving computing resources 𝑛𝑠𝑎𝑣𝑟 for the task 𝑡𝑖 before 𝐷𝑙𝑖; 

9:                Calculate the saving computing resources 𝑎𝑠𝑎𝑣𝑟 for the task 𝑡𝑖 after 𝐷𝑙𝑖; 

10:                 𝑠𝑎𝑣𝑟 = 𝑠𝑎𝑣𝑟 + 𝑛𝑠𝑎𝑣𝑟; 

11:                𝑎𝑠𝑟 = 𝑎𝑠𝑟 + 𝑎𝑠𝑎𝑣𝑟;      

12:         𝑡𝑒𝑚𝑝1= 𝑡𝑒𝑚𝑝1 + 𝑚𝑖𝑛𝑠𝑡𝑒𝑝; 

13:     If (𝑎𝑣𝑟 < 𝑚𝑖𝑛𝑟) and (𝑎𝑠𝑟 > 0) then 

14:         𝑚𝑖𝑛𝑟 = 𝑠𝑎𝑣𝑟, 𝑠𝑡𝑒𝑡 = 𝑛𝑠𝑡𝑒𝑡; 

15:         If Checksch(𝑡𝑖) then 

16:            Schedule 𝑡𝑖;     
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For jobs in 𝑟𝑔𝑡𝑖, the scheduling method must ensure: (1) reducing the workload before 𝐷𝑙𝑖 
(reduce the workload between 𝐴𝑟𝑖  and 𝐷𝑙𝑖  for the unfinished task 𝑡𝑖  ) and (2) after 𝐷𝑙𝑖 
(reducing the workload after 𝐷𝑙𝑖 for the future unfinished jobs). For (1), we must ensure 
reducing the workload until the task 𝑡𝑖 can be executed as requested. Different from 𝑙𝑓𝑡𝑖 , 
which is to minimize saving computing resources. Because we do not want to enhance the 
execution time if there are enough resources supplement. For (2), we just ensure that the task 
𝑡𝑖 consumes less resources when it is executed under normalized execution time. Algorithm 4 
gives the details of scheduling those tasks. In line 1, 𝑠𝑛𝑒𝑡 records the selected normalized time. 
𝑚𝑖𝑛𝑟 records the minimum 𝑠𝑎𝑣𝑟 under different normalized execution time in line 2. 𝑠𝑎𝑣𝑟 
and 𝑎𝑠𝑎𝑣𝑟 record the saving computing resources before the deadline 𝐷𝑙𝑖 and after 𝐷𝑙𝑖 (line 4, 
Algorithm 4). We check unscheduled task in 𝑟𝑔𝑡𝑖 (lines 3~16), enhancing the normalized 
execution with a step of 𝑚𝑖𝑛𝑠𝑡𝑒𝑝 (line 12), to get the saving computing resources before the 
deadline 𝐷𝑙𝑖 (𝑛𝑠𝑎𝑣𝑟 , line 8) and after 𝐷𝑙𝑖  (𝑎𝑠𝑎𝑣𝑟 , line 9). Line 8 calculates the saving 
computing resources 𝑛𝑠𝑎𝑣𝑟 for the task 𝑡𝑖 before 𝐷𝑙𝑖. Line 9 calculates the saving computing 
resources 𝑎𝑠𝑎𝑣𝑟 for the task 𝑡𝑖  after 𝐷𝑙𝑖 . We check whether the scheduling solution has 
minimum saving computing resources (line 15), and at the same time, consumed less 
resources after 𝐷𝑙𝑖 (line 13). If it is, we check whether the task 𝑡𝑖 can be scheduled (lines 
15~16). If it is, we schedule it (line 16). 

6. Simulations and comparisons 
In the simulation, we will compare our method HSRET with CBSP [26], All-EFT [11] and 
AFCFS (Adapted First Come First Served) [5, 23, 25]. We have introduced CBSP and 
All-EFT in Section 2. AFCFS is widely used in many systems, and we suppose that AFCFS 
schedules parallel tasks as “First Come First Served” policy, and randomly select one cluster 
which ensures the parallel task can be finished before its deadline. We suppose AFCFS always 
prefer to select the minimum parallelism that ensures the tasks can be executed before their 
deadlines. 

6.1 Simulation environment 
In our simulation, there are 10 clusters, each of which has 1000 computing nodes (CPU). 
Because the sub-tasks of a parallel task always need to exchange information with each other, 
a task can not be parallelly executed to two clusters. In other words, a task can only be 
parallelly executed in one cluster. We model our simulation as Fig. 3. There are 10 LCs 
(LC1~LC10) in our system. Most of clusters only have a few CPUs 
(1~3)( http://www.cs.huji.ac.il/labs/parallel/workload), so we suppose there are only one kind 
of CPUs in one cluster. All nodes in one Cluster have the same computing capacity and the 
computing speed of every node is [0.8, 1.2] times to a standard computing resource. In our 
simulation, there are two kinds of parallel tasks in the scheduling: WRF and GRAPES. The 
two kinds of tasks have the same ratio in the number of tasks belonging to WRF and GRAPES. 
We suppose that the speedup has the same value to WRF or GRAPES (in Fig. 4 or Fig. 5). 
Suppose that the length of every parallel task obeys uniform distribution in [500, 9500] 
minutes (under the minimum parallelism for WRF or for GRAPES) when they are parallelly 
executed on some standard resources (with minimum parallelism in Figs. 4 and 5). According 
to the speed of selected CPUs and the parallelism, we get the execution time. The deadline of 
every parallel task is a random in [1.5, 5] times of the execution time when the parallel task has 
the minimum parallelism. To get the accurate execution time under different parallelisms of 
the parallel tasks is very difficult, so we will investigate our scheduling method in different 
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accuracies of the forecast of execution time (ρ),  100%, 95%, 90%. “100%” means that we can 
get an absolutely accurate value in forecasting execution time under different parallelisms. 
“95%” means that if we forecast the execution time is 1, then the actual execution time would 
be changed in [1, 1.05]. “90%” means that if we forecast the execution time is 1, then the 
actual execution time would be changed in [1, 1.1]. 

6.2 Comparison and discussion 
In the simulation, we will compare four methods in AET (Average execution time), AWT 
(Average waiting time), and PUT (percentage of unfinished tasks before deadline). We will 
evaluate two kinds of slot time: 360 minutes and 720 minutes. We consider the system when it 
has a relatively high system load, so when the slot time is 180 (mins), the arrival rate λ is 
changed from 100 to 150, with a step of 10; when the slot time is 360 (mins), the arrival rate is 
changed from 200 to 300, with a step of 20. We suppose that the number of arriving tasks in 
every slot time is a random in [1, 2*λ-1]. We will test those methods in 1000000 slot time. 

6.2.1 Comparison of AET 
 

 
Fig. 9. AET at different arrival rates when slot time=360 

 
Fig. 10. AET at different arrival rates when slot time=720 
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Figs. 9 and 10 are the AET of different methods at different arrival rates and with different 
accuracies about the forecast of execution time under different parallelisms. Fig. 9 is the AET 
when the slot time is 360 (minutes) and Fig. 10 is the AET when the slot time is 720 (minutes).  

Generally, no matter which slot time is, the AET of all four methods are increasing with the 
enhancement of arrival rates. The order of AET from big to small is: AFCFS, CBSP, 
ALL-EFT and HSRET. AFCFS has the largest value in AET because it always makes every 
task have the minimum resources to ensure it can be finished before its deadline. ALL-EFT 
always ensures the task to be executed in the shortest time, so it has a relatively lower value in 
AET. CBSP has three steps and it always assigns resources according to the system load. So, 
the AET of CBSP has a tradeoff between AFCFS and ALL-EFT. HSRET considers the system 
load, and then according to the system load and other requirements (deadline, ρ) to schedule 
resources. Thus it holds the lowest value in AET. 

All methods have an increasing trend with the increase of arrival rate and the decrease of ρ. 
When the slot time is 360 mins, the average AETs of ALL-EFT, CBSP, AFCFS and HSRET 
are 5.2153E+03, 5.4145E+03, 5.8336E+03 and 4.3674E+03, respectively. To ALL-EFT, 
CBSP, AFCFS, HSRET average reduces by 16.26%, 19.34% and 25.13% in AET. When the 
slot time is 720 mins, the average AETs of ALL-EFT, CBSP, AFCFS and HSRET are 5.3767 
E+03, 5.6382 E+03, 6.1357 E+03 and 4.6249 E+03, respectively. To ALL-EFT, CBSP, 
AFCFS, HSRET average reduces by 13.98%, 17.97% and 24.62%. 

With the decrease of ρ, all methods have a little increase in AET. This is because it 
becomes difficult and not accurate to predict the system load for all methods. For example, 
HSRET under ρ = 90% increases by 9.45% and 18.02% to the AET when ρ = 95% and 
ρ = 100% when the slot time is 360. 

The value of slot time also has an effect on AET. The AETs (of all methods) have a smaller 
value when the slot time is 720 (secs) compare to the AETs  when the slot time is 360 (secs). 
This is because with the increasing of slot time, more resource fragments are consumed for the 
parallel tasks. 

6.2.2 Comparison of AWT 
Fig. 11 is the AWT of different methods at the arrival rate changed from 100 to 150 with a step 
of 10. Fig. 12 is the AWT of different methods at the arrival rate changed from 200 to 300 with 
a step of 20. Table 3 is the average AWT under different conditions. 

The order of AWT from big to small is: ALL-EFT, CBSP, AFCFS, HSRET, no matter the 
slot time is 360 (Fig. 11) or 720 (Fig. 12). To AWT of ALL-EFT, CBSP and AFCFS, and 
AWT of HSRET 196.4, 124.0603 and 54.2381, about 34.91%, 25.3% and 19.02% when the 
slot time is 360 (Fig. 11); HSRET average reduces by 204.0325, 122.8922 and 46.6326, about 
34.48%, 24.07% and 10.74% in AWT when the slot time is 720 (Fig. 12). 

ALL-EFT has the highest value in AWT, because ALL-EFT always waits for adequate 
resources to shorten the execution time or to ensure the deadline requirement. CBSF 
sometimes is required to wait for resources for the selected parallelism. We can find that 
AFCFS has a lower value in AWT expecting HSRET, because AFCFS always allocate 
resources once they come and with the smallest resources requirement. HSRET gets the initial 
scheduling list as AFCFS, and then according to the initial list, gets an optimistic scheduling 
result. So, HSRET always has the lowest value in AWT.  

Compared to Section 6.2.1 about the AET, we find that there are some conflicts in AWT 
and AET, especially for AFCFS and ALL-EFT. AFCFS always allocates tasks when the task 
comes, so they have a lower value in AWT, but it always gives only the lowest resources to 
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ensure meeting the deadline of the task, so, it has a higher value in AET. Contrary to AFCFS, 
ALL-EFT always makes the task execute in the shortest execution time under the system load 
requirement, so it has a higher value in AET and a lower value in AWT. 

The accuracy of ρ plays an important role for AWTs of all methods. AWTs of all methods 
have a little increasing trend with the increasing of ρ. The reason is when we do not get a 
inaccurate of ρ, some tasks may not be executed as we wish, and that makes other tasks wait 
more time.  

 

 
Fig. 11. AWT at different arrival rates when slot time=360 

 
Fig. 12. AWT at different arrival rates when slot time=720 

6.2.3 Comparison of PUT 
Fig. 13 is the PUT of different methods when the arrival rate is changed from 100 to 150 with 
a step of 10. Fig. 14 is the PUT of different methods when the arrival rate is changed from 200 
to 300 with a step of 20.  
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Fig. 13. PUT at different arrival rates when slot time=360 

 
Fig. 14. PUT at different arrival rates when slot time=720 

In general, all methods increase with the enhancement of arrival rates and the value of ρ. 
HSRET always has the lowest value in PUT, followed by AFCFS, CBSP and ALL-EFT, 
respectively. HSRET always not only considers the deadline, but also considers the system 
load, and based on the AFCFS policy, it optimizes the scheduling result to satisfy multiple 
targets, so it has the best performance in PUT. AFCFS always gives tasks the smallest 
resources to ensure they can be finished before deadlines, so it also has a relatively low value 
in PUT, but at the same time, it has the highest value in AET (Section 6.2.1). ALL-EFT always 
gives every task as many resources as possible under the system load, so it has relative low 
value in AET, and at the same time, because of the dynamic of the system load, it does not 
perform well in PUB. CBSP also has the same problem to HSRET, because there is a difficulty 
for them to schedule resources in the dynamic load environment. 

For Figs 13~14, we can find the accuracy of ρ , also plays an important role in the 
scheduling result of PUT. PUTs of all methods with ρ = 100% increase by about 3% and 5% 
to the condition when ρ = 95% and ρ = 90% . For example, PUT of HSRET under ρ =
100% enhances by 17.56% and 29.88% to the condition when ρ = 95% and ρ = 90% (when 
the slot time is 360). With the drop of ρ, all methods have difficulty to forecast whether the 
resources are enough to ensure those tasks can be finished before their deadlines. They always 
save more resources to satisfy some other tasks when they need more resources than our 
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forecast. 

6.3 Complexity analysis 
Suppose the I is the number of tasks, the maximum parallelism of all tasks is maxp, the number 
of cluster is cn, the maximum number of resources in a cluster is maxr.  

Algorithm 1 tries to get the normalized execution time. The complexity of lines 5~15 
(Algorihm 1) is maxp, and the complexity of lines 6~9 is I. So the complexity of Algorithm 1 
is: 

O(Algorithm 1) = O(𝐼𝑚𝑎𝑥𝑝 +𝑚𝑎𝑥𝑝 + 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑟) 
In Algorithm 2, for every task (I is the number of tasks), according to the different kinds of 

tasks, Sch1(), Sch2() and Sch3() are used to schedule those tasks to different clusters (the 
number of clusters is cn). So, the complexity of Algorithm 2 is: 

O(Algorithm 2) = �O(Sch1) + O(Sch2) + O(Sch3)� ∗ O(𝑐𝑛) 
Algorithm 3 (Sch1) tries to search for scheduling method for the task 𝑡𝑖 (the number of 

tasks is I ) based on reschedule 𝑙𝑓𝑡𝑖 (We take the number of tasks in 𝑙𝑓𝑡𝑖 as a constant 𝑐𝑜𝑛1, 
the resource number is 𝑚𝑎𝑥𝑟 ∗ 𝑐𝑛). So, the complexity of Algorithm 3 is: 

O(Algorithm 3) = O(Sch1) = O(𝐼 ∗ 𝑐𝑜𝑛1)= O(𝐼) 
Sch2 just schedules tasks (the number of tasks is I) to enhance the normalized execution 

time and reduces the system load with maxp steps, so the complexity of Sch2: 
O(Sch2) = O(𝑚𝑎𝑥𝑝 ∗ 𝐼) 

Algorithm 4 (Sch3) tries to search for scheduling method for the task 𝑡𝑖 (the number of 
tasks is I ) based on reschedule 𝑟𝑔𝑡𝑖 (We take the number of tasks in 𝑟𝑔𝑡𝑖 as a constant 𝑐𝑜𝑛2). 
So, the complexity of Algorithm 4 is:  

O(Algorithm 4) = O(Sch3) = O(𝐼 ∗ 𝑐𝑜𝑛2)= O(𝐼) 
So, the complexity of our method is: 

O(Algorithm 1) + O(Algorithm 2)
= O(𝐼𝑚𝑎𝑥𝑝 + 𝑚𝑎𝑥𝑝+ 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑟) + �O(Sch1) + O(Sch2) + O(Sch3)�
∗ O(𝑐𝑛) 

= O(𝐼𝑚𝑎𝑥𝑝 +𝑚𝑎𝑥𝑝 + 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑟) + (O(𝐼) + O(𝑚𝑎𝑥𝑝 ∗ 𝐼) + O(𝐼)) ∗
O(𝑐𝑛) 

= O(𝐼𝑚𝑎𝑥𝑝 +𝑚𝑎𝑥𝑝 + 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑟) + O(𝐼 ∗ 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑝) 
And most of time, we can get the normalized execution time for the system load (or the load 

forecast), so, we can take the complexity of Algorithm 1 as O(1), and then the complexity of 
our method becomes: 

O(𝐼 ∗ 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑝) 
For every task (O(𝐼)), AFCFS tries to search in every cluster (O(𝑐𝑛)), to find a parallelism 

(O(𝑚𝑎𝑥𝑝) ) to ensure finishing the task before its deadline, so the complexity of AFCFS is the 
same as our method: O(𝐼 ∗ 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑝). ALL-EFT tris to select a parallelism (O(𝑚𝑎𝑥𝑝) ) for 
every task (O(𝐼)) in every cluster (O(𝑐𝑛)) to ensure that the task has the minimum execution 
time, and repeat the step until all tasks have been scheduled (O(𝐼)). So, the complexity of 
ALL-EFT is: O(𝐼2 ∗ 𝑐𝑛 ∗ 𝑚𝑎𝑥𝑝). The complexity of CBSP is decided by the three steps: 
firstly, determining of the computing clusters (O(𝑐𝑛)); secondly, determining the optimal 
number of processors in each cluster(O(𝑐𝑛)); finally, placing the tasks on the appropriate 
processors (O(𝐼 ∗ 𝑚𝑎𝑥𝑝)). So, the complexity of CBSP is O(𝐼 ∗ 𝑐𝑛2 ∗ 𝑚𝑎𝑥𝑝). In summary, 
our method has the same complexity to AFCFS, and it is less than the complexity of ALL-EFT 
and CBSP. 
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7. Conclusion and future work 
In this paper, we pay attention to the scheduling of moldable parallel tasks with non-linear 
speedup. We try to normalize those parallel tasks and make them have the same scope of 
execution time. Based on our analysis, we propose a scheduling method HSRET in the paper. 
First, HSRET tries to schedule tasks to make all tasks executed at the same reference execution 
time, and then according to the details of the deadline and other multiple scheduling targets, 
HSRET gets an initial scheduling result, and based on the initial result, some optimized 
methods are used to improve it. Simulation results show that our method has performed better 
in AET, AWT and PUT. Recently, for most of research work on the energy consumption of the 
parallel tasks, those researchers try to find some scheduling methods to save the energy 
consumption, and at the same time, to keep other metrics. As future work, we try to use the 
normalized execution time to work on the energy-aware [30] scheduling for moldable parallel 
tasks. 
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