• Title/Summary/Keyword: parabolic load

Search Result 72, Processing Time 0.02 seconds

Dynamic Stability Regions for Arches

  • Park, Kwang-Kyou;Lee, Byoung-Koo;Oh, Sang-Jin;Park, Kyu-Moon;Lee, Tae-Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.819-823
    • /
    • 2003
  • The differential equations governing the shape of displacement for the shallow parabolic arch subjected to multiple dynamic point step loads were derived and solved numerically The Runge-Kutta method was used to perform the time integrations. Hinged-hinged end constraint was considered. Based on the Budiansky-Roth criterion, the dynamic critical point step loads were calculated and the dynamic stability regions for such loads were determined by using the data of critical loads obtained in this study.

  • PDF

A Study on Dynamic Stability Regions for Parabolic Shallow Arches (낮은 포물선(抛物線) 아치의 동적(動的) 안정영역(安定領域)에 관한 연구(硏究))

  • Park, Kwang Kyou;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.1-9
    • /
    • 1986
  • Dynamic stability of parabolic shallow arches, which are supported by hinges at both ends, is investigated. The Runge-Kutta method is used to perform time integrations of the differential equations of motion with proper boundary conditions. Based on Budiansky-Roth criterion, dynamic critical load combinations are evaluated numerically for cases of step loads of infinite duration and impulse loads, individually. The results are plotted to get interaction curves. The loci of the dynamic critical loads, which are obtained in this study, are proposed as boundaries between the dynamic stability and instability regions for the parabolic shallow arches. The results for the parabolic shallow arches are also compared with those for sinusoidal arches of the same arch rises. According to the investigation, the dynamic stability regions for the parabolic arches are larger than those for the sinusoidal arches. However, it is shown that the arch rise is the more governing factor than the shape.

  • PDF

In-Plane Buckling Behavior of Fixed Shallow Parabolic Arches (고정지점을 갖는 낮은 포물선 아치의 면내 좌굴거동)

  • Moon, Jiho;Yoon, Ki-Yong;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.79-87
    • /
    • 2008
  • This paper investigates the in-plane stability of fixed shallow arches. The shape of the arches is parabolic and the uniformly distributed load is used in the study. The nonlinear governing equilibrium equation of the general arch is adopted to derive the incremental form of the load-displacement relationship and the buckling load of the fixed shallow arches. From the results, it is found that buckling modes (symmetric or asymmetric) of the arches are closely related to the dimensionless rise H, which is the function of slenderness ratio and the rise to span ratio of such arches. Moreover, the threshold of different buckling modes and buckling load for fixed shallow arches are proposed. A series of finite element analysis are conducted and then compared with proposed ones. From the comparative study, the proposed formula provides the good prediction of the buckling load of fixed shallow arches.

Approximate Solution for In-Plane Elastic Buckling of Shallow Parabolic Arches (낮은 포물선 아치의 탄성 면내좌굴에 관한 근사식)

  • Moon, Ji Ho;Yoon, Ki Yong;Yi, Jong Won;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.427-436
    • /
    • 2006
  • The classical buckling theory assumes that prebuckling behavior is linear and that the effect of prebuckling deformations on buckling can be ignored. However, when the rise to span ratio decreases, prebuckling deformation cannot be ignored and the symetrical buckling strength can be smaler than the asymetrical buckling strength. Finally, arches can fail due to snap-through buckling. This paper investigates the non-linear behavior and strength of pin-ended parabolic shallow arches using the non-linear governing differential equation of shallow arches. These results were compared with the solution for the symmetrical buckling load of pin-ended parabolic shallow arches was suggested.

Experimental study on the stress-strain relation of PVC-CFRP confined reinforced concrete column subjected to eccentric compression

  • Yu, Feng;Kong, Zhengyi;Li, Deguang;Vu, Quang-Viet
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.151-159
    • /
    • 2020
  • An experimental study on the stress-strain relation of PVC-CFRP confined reinforced concrete columns subjected to eccentric compression was carried out. Two parameters, such as the CFRP strips spacing and eccentricity of axial load, were considered. The experimental results showed that all specimens failed by compressive yield of longitudinal steel bar and rupture of CFRP strips. The bearing capacity of specimen decreases as the eccentricity or the CFRP strips spacing increases. The stress-strain relation of specimens undergoes two stages: parabolic and linear stages. In the parabolic stage, the slope of stress-strain curve decreases gradually as the eccentricity of axial loading increases while the CFRP strips spacing has little effect on the slope of stress-strain curve. For the linear stage, the slope of stress-strain curve decreases as the eccentricity of axial load or the CFRP strips spacing increases. A model for predicting the stress-strain relation of columns under eccentric compression is proposed and it agrees well with various test data.

An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates

  • Abbas, Soufiane;Benguediab, Soumia;Draiche, Kada;Bakora, Ahmed;Benguediab, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.365-380
    • /
    • 2020
  • The focus of this paper is to develop an analytical approach based on an efficient shear deformation theory with stretching effect for bending stress analysis of cross-ply laminated composite plates subjected to transverse parabolic load and line load by using a new kinematic model, in which the axial displacements involve an undetermined integral component in order to reduce the number of unknowns and a sinusoidal function in terms of the thickness coordinate to include the effect of transverse shear deformation. The present theory contains only five unknowns and satisfies the zero shear stress conditions on the top and bottom surfaces of the plate without using any shear correction factors. The governing differential equations and its boundary conditions are derived by employing the static version of principle of virtual work. Closed-form solutions for simply supported cross-ply laminated plates are obtained applying Navier's solution technique, and the numerical case studies are compared with the theoretical results to verify the utility of the proposed model. Lastly, it can be seen that the present outlined theory is more accurate and useful than some higher-order shear deformation theories developed previously to study the static flexure of laminated composite plates.

Buckling Loads and Post-Buckling Behavio of Cantilever Column with Constant Volume (일정체적 캔틸레버 기둥의 좌굴하중 및 후좌굴 거동)

  • Lee Seung-Woo;Lee Tae-Eun;Kim Gwon-Sik;Lee Byoung-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.935-940
    • /
    • 2006
  • Numerical methods are developed for solving the elastica and buckling load of cantilever column with constant volume, subjected to a compressive end load. The linear, parabolic and sinusoidal tapers with the regular polygon cross-sections are considered, whose material volume and span length are always held constant. The differential equations governing the elastica of buckled column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine the horizontal deflection at free end and the buckling load, respectively. The numerical methods developed herein for computing the elastica and the buckling loads of the columns are found to be efficient and reliable.

  • PDF

Verification and Development of Lighting Design Data for Office in Korea (Focused on the Evaluation of Lighting Energy and Cooling Load) (사무소를 위한 조명설계 자료의 개발과 검증 (조명에너지와 냉방부하를 중심으로))

  • Kim, Eun-Hee;Suh, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1043-1048
    • /
    • 2006
  • This paper aimed to verify and develop lighting design data for offices in Korea. It focused on a Korean standard office value relative to lighting density and the evaluation of lighting energy and cooling load. When planning indoor lighting design, we generally utilize the lighting density value which is set $14W/m^2$ by the ASHRAE/IES standard office value. However, the value is not appropriate to apply in Korea where higher efficiency lamps are more popular than others. For calculation of a proper lighting density of Korea, we analysed distribution curves of luminous intensity(2-lamp fluorescent lighting fixture with Parabolic) and derived the new lighting density $12.64W/m^2$ as Korea standard office value. In the simulation using this value, it was shown that lighting energy and cooling load could be reduced.

  • PDF

Investigation of buckling behavior of functionally graded piezoelectric (FGP) rectangular plates under open and closed circuit conditions

  • Ghasemabadian, M.A.;Kadkhodayan, M.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.271-299
    • /
    • 2016
  • In this article, based on the higher-order shear deformation plate theory, buckling analysis of a rectangular plate made of functionally graded piezoelectric materials and its effective parameters are investigated. Assuming the transverse distribution of electric potential to be a combination of a parabolic and a linear function of thickness coordinate, the equilibrium equations for the buckling analysis of an FGP rectangular plate are established. In addition to the Maxwell equation, all boundary conditions including the conditions on the top and bottom surfaces of the plate for closed and open circuited are satisfied. Considering double sine solution (Navier solution) for displacement field and electric potential, an analytical solution is obtained for full simply supported boundary conditions. The accurate buckling load of FGP plate is presented for both open and closed circuit conditions. It is found that the critical buckling load for open circuit is more than that of closed circuit in all loading conditions. Furthermore, it is observed that the influence of dielectric constants on the critical buckling load is more than those of others.

Equivalent stiffness method for nonlinear analysis of stay cables

  • Xia, G.Y.;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.661-667
    • /
    • 2011
  • In the famous equivalent elasticity modulus method proposed by Ernst for the geometrical nonlinear analysis of stay cables, the cable shape was assumed as a parabolic curve, and only a part of the gravity load normal to the chord was taken into account with the other part of gravity load parallel to the chord being ignored. Using the actual catenary curve and considering the entire gravity load of stay cables, the present study has derived the equivalent stiffness method to analyze the sag effect of stay cables in cable-stayed bridges. The derived equivalent stiffness can be degenerated into Ernst's equivalent elasticity modulus method with some approximations. Therefore, the Ernst's method is a special and approximate formulation of the present method. The derived equivalent stiffness provides a theoretical explanation for the famous Ernst's formula.