• Title/Summary/Keyword: parabolic equation

Search Result 251, Processing Time 0.02 seconds

Effects of Depth-varying Compressional Wave Attenuation on Sound Propagation on a Sandy Bottom in Shallow Water (천해 사질 퇴적층에서 종파감쇠계수의 깊이별 변화가 음파손실에 미치는 영향)

  • Na, Young-Nam;Shim, Tae-Bo;Jurng, Moon-Sub;Choi, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.76-82
    • /
    • 1994
  • The characteristics of bottom sediment may be able to vary within a few meters of depth in shallow water. Since bottom attenuation coefficient as well as sound velocity in the bottom layer is determined by the composition and characteristics of sediment itself, it is reasonable to assume that the bottom attenuation coefficient is accordingly variable with depth. In this study, we use a parabolic equation scheme to examine the effects of depth-varying compressional wave attenuation on acoustic wave propagation in the low frequency ranging from 100 to 805 Hz. The sea floor under consideration is sandy bottom where the water and the sediment depths are 40 meters and 10 meters, respectively. Depending on the assumption that attenuation coefficient is constant or depth-varying, the propagation loss difference is as large as 10dB within 15 km. The predicted propagation loss is very much comparable to the measured one when we employ a depth-varying attenuation coefficient.

  • PDF

A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments

  • Elmascri, Setti;Bessaim, Aicha;Taleb, Ouahiba;Houari, Mohammed Sid Ahmed;Mohamed, Sekkal;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.193-209
    • /
    • 2020
  • This paper presents a new hyperbolic shear deformation plate theory including the stretching effect for free vibration of the simply supported functionally graded plates in thermal environments. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The present one has a new displacement field which introduces undetermined integral variables. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume power laws of the constituents. The equation of motion of the vibrated plate obtained via the classical Hamilton's principle and solved using Navier's steps. The accuracy of the proposed solution is checked by comparing the present results with those available in existing literature. The effects of the temperature field, volume fraction index of functionally graded material, side-to-thickness ratio on free vibration responses of the functionally graded plates are investigated. It can be concluded that the present theory is not only accurate but also simple in predicting the natural frequencies of functionally graded plates with stretching effect in thermal environments.

Estimation of a transition point of sound propagation condition using transmission loss data measured in SAVEX15 (SAVEX15 실험 해역에서 측정된 전달손실 자료를 이용한 음파 전달 조건의 변환점 추정)

  • Kwon, Hyuckjong;Choi, Jee Woong;Kim, Byoung-Nam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Sound propagation in shallow water changes from spherical spreading to cylindrical spreading, depending on boundary conditions, and this point is defined as a transition point of the sound propagation condition. Theoretically, the transition point can be estimated using the transmission loss as a function of source-receiver range. In this paper, the transmission loss curve in a Pekeris waveguide is predicted using a parabolic-equation based acoustic propagation model and using this transmission loss curve, the range from the source of the transition point is estimated, which is compared to the critical distance calculated using the sound speed ratio of water to sediment. In addition, the effects of the sound speed profile and source depth change on the transition point are investigated. Finally, the transition point is estimated using the transmission loss data measured during the period of the SAVEX15 (Shallow Water Acoustic Variability EXperiment 2015) conducted 65 km southwest of Jeju Island in May 2015, and it is compared to the ocean environmental parameters to understand the properties of sound propagation in the experimental area.

Advanced analysis and optimal design of space steel frames accounting for nonlinear behavior of connections (접합부의 비선형 거동을 고려한 공간 강뼈대 구조물의 고등해석과 최적설계)

  • Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.683-694
    • /
    • 2004
  • Advanced analysis and optimal design of semi-rigid space steel frames were presented. The advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. Material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and the parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. One by one, the member with the largest unit value evaluated using the LRFD interaction equation were placed adjacent to a larger member selected from the database. The objective function was assumed to be the weight of steel frame, while the constraint functions were load-carrying capacities, deflections, inter-story drifts, and the ductility requirements. The member sizes determined using the proposed method were compared to those derived from the conventional LRFD method.

Acoustic Characteristics of Underwater Noise from Uldolmok Tidal Current Pilot Power Plant (울돌목 시험조류발전소의 수중소음 특성 연구)

  • Ko, Myungkwon;Choi, Jee Woong;Yi, Jin-Hak;Jeong, Weonmu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.523-531
    • /
    • 2012
  • Recently, as a result of increasing concern about eco-friendly power, the demand for the power stations using environmentally friendly powers such as photovoltaic energy, wind force, tidal power, and tidal current has been increasing worldwide. Among these power stations tidal current power plant requires strong current generated by the topographic characteristics of the ocean floor. Uldolmok waterway producing very strong current is an ideal location for a tidal current power generation. However the occurrence of anthropogenic underwater noise generated by the tidal current power station may affect the marine environment. Therefore, it is necessary to evaluate the noise radiated from the station and predict the range influenced by the radiated noise. In this paper, the measurements of radiated noise spectrum level by the tidal current power station are presented, and the source level per unit area is estimated. Finally, the propagation properties of the radiated noise in the Uldolmok waterway is evaluated from the model simulation using the parabolic equation method, RAM.

Three-dimensional Resistivity Inversion Including Topographic Effect (지형효과를 포함한 3차원 전기비저항 역산)

  • 박종오;김희준;송무영
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • Three-dimensional (3-D) resistivity inversion including a topographic effect can be considered theoretically to be the technique of acquiring the most accurate image in the interpretation of resistivity data, because it includes characteristic image that the actual subsurface structure is 3-D. In this study, a finite-element method was used as the numerical method in modeling, and the efficiency of Jacobian calculation has been maximized with sensitivity analysis for the destination block in inversion process. Also, during the iterative inversion, the resolution of inversion can be improved with the method of selecting the optimal value of Lagrange multiplier yielding minimum RMS(root mean square) error in the parabolic equation. In this paper, we present synthetic examples to compare the difference between the case which has the toprographic effect and the other case which has not the effect in the inversion process.

Advanced analysis and optimal design of steel frames accounting for nonlinear behavior of connections (접합부의 비선형 거동을 고려한 강뼈대 구조물의 고등해석과 최적설계)

  • Choi, Se Hyu;Park, Moon Ho;Song, Jae Ho;Lim, Cheong Kweon
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.661-672
    • /
    • 2003
  • The advanced analysis and optimal design of semi-rigid frame were presented. Advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. On the other hand, material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. The member with the largest unit value evaluated using the LRFD interaction equation was replaced one by one with an adjacent larger member selected from the database. The objective function was assumed as the weight of steel frame, with the constraint functions accounting for load-carrying capacities, deflections. inter-story drifts, and ductility requirement. Member sizes determined by the proposed method were compared with those derived using the conventional LRFD method.

The Modeling and Simulation for Pseudospectral Time-Domain Method Synthetic Environment Underwater Acoustics Channel applied to Underwater Environment Noise Model (수중 환경 소음 모델이 적용된 의사 스펙트럼 시간영역 법 합성환경 수중음향채널 모델링 및 시뮬레이션)

  • Kim, Jang-Eun;Kim, Dong-Gil;Han, Dong-Seog
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.15-28
    • /
    • 2016
  • It is necessary to analyze underwater acoustics channel(UAC) modeling and simulation for underwater weapon system development and acquisition. In order to analyze UAC, there are underwater acoustics propagation numerical analysis models(Ray theory, Parabolic equation, Normal-mode, Wavenumber integration). However, If these models are used for multiple frequency signal analysis, they are inaccurate to calculate result of analysis effectiveness and restricted for signal processing and analysis. In this paper, to overcome this problem, we propose simple/multiple frequency signal analysis model of the Pseudospectral Time-Domain Method synthetic environment UAC applied to underwater environment noise model as like as realistic underwater environment. In order to confirm the validation of the model, we performed the 9 scenarios simulation(4 scenarios of single frequency signal, 4 scenarios of multiple frequency signal, 1 scenario of single/multiple frequency signal like submarine radiated noise) for validation and confirmed the validation of this model through the simulation model.

Numerical simulation of electrokinetic dissipation caused by elastic waves in reservoir rocks

  • Zhang, Xiaoqian;Wang, Qifei;Li, Chengwu;Sun, Xiaoqi;Yan, Zheng;Nie, Yao
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • The use of electrokinetic dissipation method to study the fluid flow law in micro-pores is of great significance to reservoir rock microfluidics. In this paper, the micro-capillary theory was combined with the coupling model of the seepage field and the current field under the excitation of the harmonic signal, and the coupling theory of the electrokinetic effect under the first-order approximation condition was derived. The dissipation equation of electrokinetic dissipation and viscous resistance dissipation and its solution were established by using Green's function method. The physical and mathematical models for the electrokinetic dissipation of reservoir rocks were constructed. The microscopic mechanism of the electrokinetic dissipation of reservoir rock were theoretically clarified. The influencing factors of the electrokinetic dissipation frequency of the reservoir rock were analyzed quantitatively. The results show that the electrokinetic effect transforms the fluid flow profile in the pores of the reservoir from parabolic to wavy; under low-frequency conditions, the apparent viscosity coefficient is greater that one and is basically unchanged. The apparent viscosity coefficient gradually approaches 1 as the frequency increases further. The viscous resistance dissipation is two orders of magnitude higher than the electrokinetic effect dissipation. When the concentration of the electrolyte exceeds 0.1mol/L, the electrokinetic dissipation can be neglected, while for the electrolyte solution (<$10^{-2}M$) in low concentration, the electrokinetic dissipation is very significant and cannot be ignored.

Characterization of Lattice Thermal Conductivity in Semiconducting Materials (반도체 재료의 격자열전도도 분석)

  • Lim, Jong-Chan;Yang, Heesun;Kim, Hyun-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.61-65
    • /
    • 2020
  • Suppressing lattice thermal conductivity of thermoelectric materials is one of the most popular approach to improve their thermoelectric performance. However, accurate characterization of suppressed lattice thermal conductivity is challenging as it can only be acquired by subtracting other contributions to thermal conductivity from the total thermal conductivity. Here we explain that electronic thermal conductivity (for all materials) and bipolar thermal conductivity (for narrow band gap materials) need to be determined accurately first to characterize the lattice thermal conductivity accurately. Methods to calculate Lorenz number for electronic thermal conductivity (via single parabolic model and using a simple equation) and bipolar thermal conductivity (via two-band model) are introduced. Accurate characterization of the lattice thermal conductivity provides a powerful tool to accurately evaluate effect of different defect engineering strategies.