Browse > Article
http://dx.doi.org/10.6117/kmeps.2020.27.4.061

Characterization of Lattice Thermal Conductivity in Semiconducting Materials  

Lim, Jong-Chan (Department of Materials Science and Engineering, Hongik University)
Yang, Heesun (Department of Materials Science and Engineering, Hongik University)
Kim, Hyun-Sik (Department of Materials Science and Engineering, Hongik University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.27, no.4, 2020 , pp. 61-65 More about this Journal
Abstract
Suppressing lattice thermal conductivity of thermoelectric materials is one of the most popular approach to improve their thermoelectric performance. However, accurate characterization of suppressed lattice thermal conductivity is challenging as it can only be acquired by subtracting other contributions to thermal conductivity from the total thermal conductivity. Here we explain that electronic thermal conductivity (for all materials) and bipolar thermal conductivity (for narrow band gap materials) need to be determined accurately first to characterize the lattice thermal conductivity accurately. Methods to calculate Lorenz number for electronic thermal conductivity (via single parabolic model and using a simple equation) and bipolar thermal conductivity (via two-band model) are introduced. Accurate characterization of the lattice thermal conductivity provides a powerful tool to accurately evaluate effect of different defect engineering strategies.
Keywords
thermoelectric; Lorenz number; lattice thermal conductivity; bipolar thermal conductivity;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials", Nat. Mater., 7, 105 (2008).   DOI
2 J. Y. Hwang, Y.-N. Kim, and K. H. Lee, "Preparation of ntype Bi-Te-Se-based thermoelectric materials with improved reliability via hot extrusion process", J. Microelectron. Packag. Soc., 26(2), 45 (2019).   DOI
3 H.-S. Kim, N. A. Heinz, Z. M. Gibbs, Y. Tang, S. D. Kang, and G. J. Snyder, "High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control", Mater. Today, 20, 452 (2017).   DOI
4 K. H. Lee, S.-i. Kim, H.-S. Kim, and S. W. Kim, "Band Convergence in Thermoelectric Materials: Theoretical Background and Consideration on Bi-Sb-Te Alloys", ACS Appl. Energy Mater., 3, 2214 (2020).   DOI
5 H.-S. Kim, "Effect of Density-of-States Effective Mass on Transport Properties of Two Converging Valence Bands", J. Korean Ceram. Soc., 56, 325 (2019).   DOI
6 H.-S. Kim, K. H. Lee, J. Yoo, J. Youn, J. W. Roh, S.-i. Kim, and S. W. Kim, "Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te3", Materials, 10, 763 (2017).   DOI
7 H.-S. Kim, H. M. Jeong, S.-M. Choi, and K. H. Lee, "Point defect engineering approaches to enhance the performance og thermoelectric materials", J. Microelectron. Packag. Soc., 26(4), 1 (2019).
8 K. H. Lee, W. H. Shin, H.-S. Kim, K. Lee, J. W. Roh, J. Yoo, J.-i. Kim, S. W. Kim, and S.-i. Kim, "Synergetic effect of grain size reduction on electronic and thermal transport properties by selectively suppressed minority carrier mobility and enhanced boundary scattering in Bi0.5Sb1.5Te3 alloys", Scr. Mater., 160, 15 (2019).   DOI
9 W. H. Shin, J. W. Roh, B. Ryu, H. J. Chang, H.-S. Kim, S. Lee, W. S. Seo, and K. Ahn, "Enhancing Thermoelectric Performances of Bismuth Antimony Telluride via Synergistic Combination of Multiscale Structuring and Band Alignment by FeTe2 Incorporation", ACS Appl. Mater. Interfaces, 10, 3689 (2018).   DOI
10 A. F. May and G. J. Snyder, "Introduction to modeling thermoelectric transport at high temperatures", in Materials, Preparation, and Characterization in Thermoelectrics, D. M. Rowe Eds., pp.1-20 (Chapter 11), CRC Press, Boca Raton (2012).
11 H.-S. Kim, Z. M. Gibbs, Y. Tang, and G. J. Snyder, "Characterization of Lorenz number with Seebeck coefficient measurement", APL Mater., 3, 041506 (2015).   DOI
12 H.-S. Kim, K. H. Kee, J. Yoo, J. Youn, J. W. Roh, S.-i. Kim, and S. W. Kim, "Effect of substitutional Pb doping on bipolar and lattice thermal conductivity in p-type Bi0.48Sb1.52Te3", J. Alloy. Compd., 10, 763 (2017).
13 H.-S. Kim, K. H. Kee, J. Yoo, W. H. Shin, J. W. Roh, J.-Y. Hwang, S. W. Kim, and S.-i. Kim, "Suppression of bipolar conduction via bandgap engineering for enhanced thermoelectric performance of p-type Bi0.4Sb1.6Te3 alloys", J. Alloy. Compd., 741, 869 (2018).   DOI