• Title/Summary/Keyword: parabolic distribution

Search Result 146, Processing Time 0.024 seconds

A general method for active surface adjustment of cable net structures with smart actuators

  • Wang, Zuowei;Li, Tuanjie
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.27-46
    • /
    • 2015
  • Active surface adjustment of cable net structures is becoming significant when large-size cable net structures are widely applied in various fields, especially in satellite antennas. A general-duty adjustment method based on active cables is proposed to achieve active surface adjustment or surface profile reconfiguration of cable net structures. Piezoelectric actuators and voice coil actuators are selected for constructing active cable structures and their simplified mechanical models are proposed. A bilevel optimization model of active surface adjustment is proposed based on the nonlinear static model established by the direct stiffness method. A pattern search algorithm combined with the trust region method is developed to solve this optimization problem. Numerical examples of a parabolic cable net reflector are analyzed and different distribution types of active cables are compared.

Verification and Development of Lighting Design Data for Office in Korea (Focused on the Evaluation of Lighting Energy and Cooling Load) (사무소를 위한 조명설계 자료의 개발과 검증 (조명에너지와 냉방부하를 중심으로))

  • Kim, Eun-Hee;Suh, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1043-1048
    • /
    • 2006
  • This paper aimed to verify and develop lighting design data for offices in Korea. It focused on a Korean standard office value relative to lighting density and the evaluation of lighting energy and cooling load. When planning indoor lighting design, we generally utilize the lighting density value which is set $14W/m^2$ by the ASHRAE/IES standard office value. However, the value is not appropriate to apply in Korea where higher efficiency lamps are more popular than others. For calculation of a proper lighting density of Korea, we analysed distribution curves of luminous intensity(2-lamp fluorescent lighting fixture with Parabolic) and derived the new lighting density $12.64W/m^2$ as Korea standard office value. In the simulation using this value, it was shown that lighting energy and cooling load could be reduced.

  • PDF

A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates

  • Bourada, Fouad;Amara, Khaled;Bousahla, Abdelmoumen A.;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.661-675
    • /
    • 2018
  • In this paper, buckling analysis of hybrid functionally graded plates using a novel four variable refined plate theory is presented. In this theory the distribution of transverse shear deformation is parabolic across the thickness of the plate by satisfying the surface conditions. Therefore, it is unnecessary to use a shear correction factor. The variations of properties of the plate through the thickness are according to a symmetric sigmoid law (symmetric S-FGM). The principle virtual works is used herein to extract equilibrium equations. The analytical solution is determined using the Navier method for a simply supported rectangular plate subjected to axial forces. The precision of this theory is verified by comparing it with the various solutions available in the literature.

On the Fracture Behaviour of the Concrete Gravity Dam Subjected to Water Pressure at the Crack Faces (균열면에 수압을 받는 중력식 콘크리트 댐의 파괴거동에 관한 연구)

  • 장희석
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.189-198
    • /
    • 1996
  • The fracture behaviour of concrete gravity dam mainly due to uplift pressure acting at the crack face was studied. Triangular type and parabolic type distribution of the uplift pressure including uniform type were first considered in case of calculating stress intensity factor(SIF) by the surface integral method. Second, the directions of crack propagation according to the uplift pressure distribution were pursued by FRANC(FRacture ANalysis Code). Third, critical crack lengths according to the uplift pressure distribution under the overflow depth were calculated. The SIF values obtained from the surface integral method were compared with those by FRANC and relatively good agrements could be obtained between both of them. And it could be seen that the direction of crack propagation in case of triangular pressure distribution was a little benter to the dam base than the one by the uniform type. Maximum critical crack lengths under the overflow depth were obtained at about 2/5-1/2 of the dam height.

  • PDF

Characterization of Asian dust using steric mode of sedimentation field-flow fractionation (Sd/StFFF) (Steric 모드의 침강장-흐름 분획법을 이용한 황사의 특성분석)

  • Eum, Chul Hun;Kim, Bon Kyung;Kang, Dong Young;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.476-482
    • /
    • 2012
  • Asian dust particles are known to have sizes ranging from a few nanometers up to about a few micrometers. The environmental and health effects depend on the size of the dust particles. The smaller, the farther they are transported, and the deeper they penetrate into the human respiratory system. Sedimentation field-flow fractionation (SdFFF) provides separation of nano to microparticles using a combination of centrifugal force and parabolic laminar flow in a channel. In this study, the steric mode of SdFFF (Sd/StFFF) was tested for size-based separation and characterization of Asian dust particles. Various SdFFF experimental parameters including flow rate, stop-flow time and field strength of the centrifugal field were optimized for the size analysis of Asian dust. The Sd/StFFF calibration curve showed a good linearity with $R^2$ value of 0.9983, and results showed an excellent capability of Sd/StFFF for a size-based separation of micron-sized particles.The optical microscopy (OM) was also used to study the size and the shape of the dust particles. The size distributions of the samples collected during a thick dust period were shifted towards larger sizes than those of the samples collected during thin dust periods. It was also observed that size distribution of the sample collected during dry period shifts further towards larger sizes than that of the samples collected during raining period, suggesting the sizes of the dust particle decrease during raining periods as the components adsorbed on the surface of the dust particles were removed by the rain water. Results show Sd/StFFFis a useful tool for size characterization of environmental particles such as the Asian dust.

Analytical Study on Distribution of Stresses Induced in Soil Beam (지반보의 응력분포에 관한 해석적 연구)

  • Lee, Seung-Hyun;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.5009-5014
    • /
    • 2015
  • Hydraulic uplift which is caused by the action of pore water pressure can be occurred in clay underlain by granular soil during conducting narrow excavation. Estimation of hydraulic uplift is done by considering soil beam. In order to execute more precise estimation of hydraulic uplift, determination of stress distribution in soil beam is necessary. This study presents stress distribution and displacement distribution in the soil beam based on the theory of elasticity. Stress distribution developed in the soil beam by self weight was derived using stress function depicted by $5^{th}$ order of polynomial and it was seen that vertical stresses along the depth of the soil beam show parabolic distribution and those directions be downward. Regarding soil beam which has the weight of $16kN/m^3, thickness and depth are 1m respectively, maximum vertical stress was about 1.7kPa. Stress distribution by the aciton of pore water pressure was derived via superposition of the stresses corresponding to the self weight and it can be seen that vertical compressive stresses act along the depth of the soil beam when the magnitude of pore water pressure equal to 5 times of the self weight is considered. Equations for prediction of the displacements in the soil beam are also presented.

Subthreshold Current Model for Threshold Voltage Shift Analysis in Junctionless Cylindrical Surrounding Gate(CSG) MOSFET (무접합 원통형 게이트 MOSFET에서 문턱전압이동 분석을 위한 문턱전압이하 전류 모델)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.789-794
    • /
    • 2017
  • Subthreshold current model is presented using analytical potential distribution of junctionless cylindrical surrounding-gate (CSG) MOSFET and threshold voltage shift is analyzed by this model. Junctionless CSG MOSFET is significantly outstanding for controllability of gate to carrier flow due to channel surrounded by gate. Poisson's equation is solved using parabolic potential distribution, and subthreshold current model is suggested by center potential distribution derived. Threshold voltage is defined as gate voltage corresponding to subthreshold current of $0.1{\mu}A$, and compared with result of two dimensional simulation. Since results between this model and 2D simulation are good agreement, threshold voltage shift is investigated for channel dimension and doping concentration of junctionless CSG MOSFET. As a result, threshold voltage shift increases for large channel radius and oxide thickness. It is resultingly shown that threshold voltage increases for the large difference of doping concentrations between source/drain and channel.

Positional Uncertainty Reduction of Overlapped Ultrasonic Sensor Ring for Efficient Mobile Robot Obstacle Detection (효율적인 이동로봇의 장애물 탐지를 위한 중첩 초음파 센서 링의 위치 불확실성 감소)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.198-206
    • /
    • 2009
  • This paper presents the reduction of the positional uncertainty of an ultrasonic sensor ring with overlapped beam pattern for the efficient obstacle detection of a mobile robot. Basically, it is assumed that a relatively small number of inexpensive low directivity ultrasonic sensors are installed at regular spacings along the side of a circular mobile robot with their beams overlapped. First, for both single and double obstacles, we show that the positional uncertainty inherent to an ultrasonic sensor can be reduced using the overlapped beam pattern, and also quantify the relative improvement in positional uncertainty. Second, given measured distance data from one or two ultrasonic sensors, we devise the geometric method to determine the position of an obstacle with respect to the center of a mobile robot. Third, we examine and compare existing ultrasonic sensor models, including Gaussian distribution, parabolic distribution, uniform distribution, and impulse, and then build the sensor model of overlapped ultrasonic sensors, adequate for obstacle detection in terms of positional uncertainty and computational requirement. Finally, through experiments using our prototype ultrasonic sensor ring, the validity of overlapped beam pattern for reduced positional uncertainty and efficient obstacle detection is demonstrated.

  • PDF

Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM

  • Nejadi, Mohammad Mehdi;Mohammadimehr, Mehdi
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.59-68
    • /
    • 2020
  • In the present study, buckling analysis of sandwich composite (carbon nanotube reinforced composite and fiber reinforced composite) Euler-Bernoulli beam in two configurations (core and layers material), three laminates (combination of different angles) and two models (relative thickness of core according to peripheral layers) using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and different types of porosity distribution on critical buckling load are discussed. Using sandwich beam, it shows a considerable enhancement in the critical buckling load when compared to ordinary composite. Actually, resistance against buckling in sandwich beam is between two to four times more. It is also showed the critical buckling loads of laminate 1 and 3 are significantly larger than the results of laminate 2. When Configuration 2 is used, the critical buckling load rises about 3 percent in laminate 1 and 3 compared to the results of configuration 1. The amount of enhancement for laminate 3 is about 17 percent. It is also demonstrated that the influence of the core height (thickness) in the case of lower carbon volume fractions is ignorable. Even though, when volume fraction of fiber increases, differences grow smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Among three porosity patterns investigated, beam with the distribution of porosity Type 2 (downward parabolic) has the maximum critical buckling load. At the end, the first three modes of buckling will be demonstrated to investigate the effect of spring constants.

Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tahar, Benabdallah
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.447-462
    • /
    • 2019
  • This present paper concerned with the analytic modelling for vibration of the functionally graded (FG) plates resting on non-variable and variable two parameter elastic foundation, based on two-dimensional elasticity using higher shear deformation theory. Our present theory has four unknown, which mean that have less than other higher order and lower theory, and we denote do not require the factor of correction like the first shear deformation theory. The indeterminate integral are introduced in the fields of displacement, it is allowed to reduce the number from five unknown to only four variables. The elastic foundations are assumed a classical model of Winkler-Pasternak with uniform distribution stiffness of the Winkler coefficient (kw), or it is with variables distribution coefficient (kw). The variable's stiffness of elastic foundation is supposed linear, parabolic and trigonometry along the length of functionally plate. The properties of the FG plates vary according to the thickness, following a simple distribution of the power law in terms of volume fractions of the constituents of the material. The equations of motions for natural frequency of the functionally graded plates resting on variables elastic foundation are derived using Hamilton principal. The government equations are resolved, with respect boundary condition for simply supported FG plate, employing Navier series solution. The extensive validation with other works found in the literature and our results are present in this work to demonstrate the efficient and accuracy of this analytic model to predict free vibration of FG plates, with and without the effect of variables elastic foundations.