• Title/Summary/Keyword: paper wastewater

Search Result 416, Processing Time 0.03 seconds

Elemental Chlorine free Bleaching of Kraft Pulps with Enzymes( I )-Oakwood Kraft Pulp- (효소를 이용한 크라프트펄프의 무감소표백-신갈나무 크라프트펄프-)

  • 강진하;박성종;임현아
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.1
    • /
    • pp.44-58
    • /
    • 1998
  • This study was carried out to bleach the Oakwood kraft pulp without the elemental chlorine using the xylanase or wastewater(We : wastewater enzymes) effluented from the submerged biofilter reactor containing the fungi, Phanerorhaete sordida YK-624. So in this research, the proper treatment conditions (pH, temperature, dosage and time) were investigated respectively. And after the various kinds of multistage bleaching of pulps, the properties of pulps were tested. From the experimental results, we can conclude as follows. In the treatments of Oakwood kraft pulps with xylanase, the proper pH, temperature, enzyme dosage and time were 8.0, $35^{\circ}C$ , 400 EXU/kg and 1 hr. respectively. And in the case of treatment with a wastewater(We) effluented from the submerged biofilter reactor, the proper pH, temperature and time were 5.5, $37^{\circ}C$ and 2 hr. respectively. On the other hand, Oakwood kraft pulps were bleached by the method of a multistage bleaching using xylanase or We instead of elemental chlorine Consequently the strengthes and brightnesses of pulps bleached by the method mentioned above were lower than those of pulp bleached by the conventional method using the elemental chlorine. But it is possible to improve the brightnesses through the increase of chlorine dioxide dosage or use of hydrogen peroxide in the final bleaching stage.

  • PDF

A Comparative Analysis of the Functional Values for Wastewater Treatment and Atmospheric Regulation in Coastal Wetland and Rice Paddy Ecosystems (갯벌과 간척농지의 수질 및 대기조절가치의 비교분석)

  • Pyo, Hee-Dong
    • Environmental and Resource Economics Review
    • /
    • v.10 no.1
    • /
    • pp.95-126
    • /
    • 2001
  • Functional values for wastewater treatment and atmospheric regulation in coastal wetland and rice paddy ecosystems are quantified, and an illustration is given on how to integrate biophysical parameters into a valuation framework. This is one of most controversial issues in economic analysis for wetland preservation versus wetland conversion to agricultural use. This paper includes theoretical considerations for estimating functional values of environmental ecosystems, and the integration of biophysical data and replacement cost method employed. Specific physical and geographical characteristics and data on ecosystem functions and services in coastal wetlands and rice paddies are addressed for evaluating their values in economic terms. In particular this paper indicates double counting problems and overestimation in the previous studies, and demonstrates how to avoid them and to maintain the consistency of valuation process involving a least-cost method, thus enables an accurate integration of the coastal wetland ecology and wetland economics. As a result which is far away from the previous studies, the total economic present value of wastewater assimilation by coastal wetland is estimated at 7,484,640 won/ha, and the net present value of positive effect for atmospheric regulation, negative effects for air pollution and water pollution by rice paddy is estimated at -37,934 won/ha, assuming that resources are infinitely long-lived and the annual value and the rate of discount (10%) is constant every year. In conclusion, for further reliability and validity of functional values for natural resources it is very noteworthy that a general equilibrium framework that could directly incorporate the interdependence between ecosystem functions and services would be preferred to the partial equilibrium framework.

  • PDF

Elemental Chlorine Free Bleaching of Kraft Pulps with Enzymes(II) -Pinewood Kraft Pulp- (효소를 이용한 크라프트펄프의 무감소표백(제2보) -소나무 크라프트펄프-)

  • 강진하;박성종;정인수
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.84-96
    • /
    • 1998
  • This study was carried out to bleach the Pinewood kraft pulp without the elemental chlorine using the xylanase or wastewater(We:wastewater enzymes) effluented from the submerged biofilter reactor containing the fungi, Phanerochaete sordida YK-624. So in this research, the proper treatment conditions(pH, temperature, dosage and time) were investigated respectively. And after the various kinds of multistage bleaching of pulps, the properties of pulps were tested. From the experimental results, we can conclude as follows. In the treatments of Pinewood kraft pulps with xylanase, the proper pH, temperature, enzyme dosage and time were 8.0, $35^{\circ}C, 400EXU/kg and 3 hr. respectively. And in the case of treatment with a wastewater(We) effluented from the submerged biofilter reactor, the proper pH, temperature and time were 5.0, $37^{\circ}C and 3 hr. respectively. On the other hand, Pinewood kraft pulps were bleached by the method of a multistage bleaching using xylanase or We instead of elemental chlorine. Consequently, the strengthes and brightnesses of pulps bleached by the method mentioned above were lower than those of pulp bleached by the conventional method using the elemental chlorine. But it is possible to improve the brightnesses through the increase of chlorine dioxide dosage or use of hydrogen peroxide in the final bleaching stage.

  • PDF

COD, SS and Turbidity Removal of Paper Wastewater Using DAE(Dissolved Air Flotation) (DAF(Dissolved Air Flotation)를 이용한 제지폐수의 COD, SS 및 탁도 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.246-253
    • /
    • 2005
  • The supernatant treatment of recovery process of raw materials of paper plant was studied using DAF (Dissolved Air Flotation) system. We investigated the removal efficiency (COD, SS and turbidity) of the DAF process. The effects of parameters such as A/S ratio, pressure, flotation conditions, coagulant concentration, mixing conditions, size and ratio of packing and nozzle type were examined. The results showed that the optimum A/S ratio and pressure were 0.058 and 4.5-5 atm, respectively. Injection times of pressurized water around 30 s and flotation times around 10 min appeared to be optimal for the DAF operation. Anion polymer addition improved the removal of COD, SS and turbidity. The smaller size and the more packing ratio were enhanced the removal efficiencies. The order of performance of nozzle was full cone > flat > assemble type.

Diversity and Abundance of Ammonia-Oxidizing Bacteria in Activated Sludge Treating Different Types of Wastewater

  • Baek, Kyung-Hwa;Park, Chul;Oh, Hee-Mock;Yoon, Byung-Dae;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1128-1133
    • /
    • 2010
  • The diversity and abundance of ammonia-oxidizing bacteria (AOB) in activated sludge were compared using PCR-DGGE and real-time PCR assays. Activated sludge samples were collected from five different types of wastewater treatment plants (WWTPs) mainly treating textile, paper, food, and livestock wastewater or domestic sewage. The composition of total bacteria determined by PCR-DGGE was highly diverse between the samples, whereas the community of AOB was similar across all the investigated activated sludge. Total bacterial numbers and AOB numbers in the aerated mixed liquor were in the range of $1.8{\times}10^{10}$ to $3.8{\times}10^{12}$ and $1.7{\times}10^6$ to $2.7{\times}10^{10}$ copies/l, respectively. Activated sludge from livestock, textile, and sewage treating WWTPs contained relatively high amoA gene copies (more than $10^5$ copies/l), whereas activated sludge from food and paper WWTPs revealed a low number of the amoA gene (less than $10^3$ copies/l). The value of the amoA gene copy effectively showed the difference in composition of bacteria in different activated sludge samples and this was better than the measurement with the AOB 16S rRNA or total 16S rRNA gene. These results suggest that the quantification of the amoA gene can help monitor AOB and ammonia oxidation in WWTPs.

The Evaluation of Scum Recyclability from Waste Sludge in Linerboard Mills (라이너지 제조공정 탈수 슬러지의 scum 재이용 가능성 평가)

  • Kang, Kwang-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.3
    • /
    • pp.42-47
    • /
    • 2008
  • For the purpose of reduction of production cost in the industrial papermaking process, the use of waste paper has been more and more increased as a fibrous raw material, and the closed system of white water became closed more than ever. "Scum" indicates the floated sludge by a flotation during primary wastewater treatment process in paper mills. If the scum is used as the raw material, it could reduce both the raw material and solid waste treatment cost with even small quantity. In this study, the element survey and the toxicity measurement was carried out for recycling scum. A load factor of stock preparation process in paper mills was measured by somerville screen. Physical properties of paper sheet containing the accepted scum from the stock of AOCC or KOCC were evaluated. The result of this study shows that recycling scum has potential to be used in paper making system. It also might be able to reduce the required energy used by the pressing or drainage process, the raw material cost, and solid waste treatment cost due to the recycling of scum.

Neutralization of Alkaline Wastewater with CO2 in a Continuous Flow Jet Loop Reactor (연속흐름형 Jet loop reactor에서 CO2를 이용한 알칼리폐수의 중화)

  • Kang, Dae-Yeop;Kim, Mi-Ran;Lim, Jun-Heok;Lee, Tae-Yoon;Lee, Jea-Keun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.101-107
    • /
    • 2016
  • This paper investigates the feasibility of applying the jet loop reactor for the neutralization of alkaline wastewater using carbon dioxide ($CO_2$). In this study, pH changes and $CO_2$ removal characteristics were examined by changing influent flow rate of alkaline wastewater (initial pH=10.1) and influent $CO_2$ flow rates. Influent flow rates of alkaline wastewater ($Q_{L,in}$) ranged between 0.9 and 6.6 L/min, and inlet gas flow rate ($Q_{G,in}$) of 1 and 6 L/min in a lab-scale continuous flow jet loop reactor. The outlet pH of wastewater was maintained at 7.2 when the ratio ($Q_{L,in}/Q_{G,in}$) of $Q_{L,in}$ and $Q_{G,in}$ was 1.1. However, the $CO_2$ removal efficiency and the outlet pH of wastewater were increased when $Q_{L,in}/Q_{G,in}$ ratio was higher than 1.1. Throughout the experiments, the maximum $CO_2$ removal efficiency and the outlet pH of wastewater were 98.06% and 8.43 at the condition when $Q_{G,in}$ and $Q_{L,in}$ were 2 L/min and 4 L/min, respectively.

Energy Efficiency Evaluation of Publicly Owned Wastewater Utilities (공공하수처리장의 에너지 소비현황 및 효율성 평가)

  • Cho, Eulsaeng;Han, Dae Ho;Ha, Jongsik
    • Journal of Environmental Policy
    • /
    • v.11 no.4
    • /
    • pp.85-105
    • /
    • 2012
  • In this paper, the energy efficiency of wastewater utilities was evaluated to explore ways to save energy via operational measures. The correlation of each wastewater characteristic parameter to energy was assessed to find a set of parameters that explained most of the variations in energy use among utilities. The results show that increases in inflow, influent COD concentration, and ratio of advanced treatment generally increased the energy use. On the other hand, increases in load factor (influentaverage flow/design flow) reduced the energy use. In the regression analysis, the energy efficiency was highest in the A2O advanced process. On the other hand, the membrane process (among the advanced processes) and the contacted aeration process (among the secondary processes) require more efforts in saving energy. However, the data base system related to energy use must be supplemented in order for more accurate analysis of energy consumption in wastewater treatment facilities. In particular, i) electricity consumption of relay pumps and, ii) energy usage per unit process, iii) pump power usage to discharge treated wastewater in a long distance, if necessary, and iv) alternative energy production and utilization status must be recorded. By utilizing the results of the analysis conducted in this study, it is possible to quantify a level of energy savings needed and establish customized energy saving measures to achieve a certain target level for benchmarking a successful case of wastewater utilities.

  • PDF

Trends of Technology Development through Investigation and Analysis of Domestic Patent Related to Wastewater Treatment Technology including Membrane, Sludge Treatment and Advanced Treatment Technology and Equipment (분리막 및 슬러지 처리와 고도처리 기술·장비를 포함한 하·폐수 처리기술의 특허 조사·분석을 통한 기술개발 동향)

  • Yoo, Ho Sik;Kim, Ji Tae
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.375-388
    • /
    • 2017
  • Wastewater treatment (WWT) technology has been developing from simple pollutant treatment to energy and resource-saving advanced technology, and various technologies combined with IT and BT are developed to minimize the amount of pollutant and toxic substance discharge to the public water areas and to improve operational efficiency. To examine the development trend of domestic wastewater treatment technology, the registered patent technologies were surveyed, classified and analyzed by year and sector. This paper considers the status of patent registration related to WWT from 2010.1 to 2017.5 in terms of the number of specific technical areas, and the trends are analyzed based on the 10 categorization field such as biological and physicochemical treatment process, equipment and device, material, sludge treatment, membrane, process control and 42 specific technical areas. A total of 3,356 patents have been registered since 2010, and the number of patents has been decreasing since the peak at 2013 and maintains 3~400 per year. The total number of patents has not yet been less than other countries, but the number of patents of more advanced technologies, which can lead the global market, such as process monitoring, new concept processing and equipment technologies is still insufficient compared to developed countries.